Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Contemporaneously growing speleothems and their value to decipher in-cave processes

Authors: Vanessa Skiba; Jens Fohlmeister;

Contemporaneously growing speleothems and their value to decipher in-cave processes

Abstract

<p>Speleothems have been developed to be valuable climate archives. Albeit much progress has been made to understand speleothem proxies, it remains difficult to differentiate between a direct climate signal and variations, which occurred due to in-cave processes like prior calcite precipitation, CO<sub>2</sub> degassing or C exchange between dissolved inorganic C-species and cave air CO<sub>2</sub>. Here, we analyse palaeoclimate proxies of contemporaneously growing speleothems, which were extracted from the SISALv2 database (Comas-Bru et al., 2020). We argue that differences in their stable O and C isotopic composition as well as in their growth rate can only arise by differences of drip site specific conditions as climate conditions for pairs of contemporaneously growing speleothems are similar. To better understand differences in the isotopic composition and growth rate of contemporaneously growing speleothems, we investigate the in-cave processes by applying a speleothem isotope and growth model. The model is based on a Rayleigh process, which includes CO<sub>2</sub> degassing and CaCO<sub>3</sub> precipitation, HCO<sub>3</sub><sup>-</sup> <—> H<sub>2</sub>O buffering as well as CO<sub>2</sub> exchange and is able to calculate growth rates. The model accounts for CaCO<sub>3</sub> deposition as prior calcite precipitation as well as CaCO<sub>3</sub> deposition at the speleothem. We find that C-exchange processes are necessary to explain the linked isotopic and growth rate differences in speleothems.</p><p> </p><p><strong>References</strong></p><p>Comas-Bru, L., Atsawawaranunt, K., Harrison, S., SISAL working group members (2020): SISAL (Speleothem Isotopes Synthesis and AnaLysis Working Group) database version 2.0. University Of Reading.</p>

Subjects by Vocabulary

Microsoft Academic Graph classification: geography Paleontology geography.geographical_feature_category Cave DECIPHER Value (mathematics) Geology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
  • citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    Powered byBIP!BIP!
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities