• shareshare
  • link
  • cite
  • add
auto_awesome_motion View all 6 versions
Publication . Preprint . Article . 2020

The processing of pseudoword form and meaning in production and comprehension: A computational modeling approach using linear discriminative learning

Yu Ying Chuang; Marie Lenka Vollmer; Elnaz Shafaei-Bajestan; Susanne Gahl; Peter Hendrix; R. Harald Baayen;
Open Access
Published: 06 May 2020 Journal: Behavior Research Methods (eissn: 1554-3528, Copyright policy )
Pseudowords have long served as key tools in psycholinguistic investigations of the lexicon. A common assumption underlying the use of pseudowords is that they are devoid of meaning: Comparing words and pseudowords may then shed light on how meaningful linguistic elements are processed differently from meaningless sound strings. However, pseudowords may in fact carry meaning. On the basis of a computational model of lexical processing, linear discriminative learning (LDL Baayen et al., Complexity, 2019, 1–39, 2019), we compute numeric vectors representing the semantics of pseudowords. We demonstrate that quantitative measures gauging the semantic neighborhoods of pseudowords predict reaction times in the Massive Auditory Lexical Decision (MALD) database (Tucker et al., 2018). We also show that the model successfully predicts the acoustic durations of pseudowords. Importantly, model predictions hinge on the hypothesis that the mechanisms underlying speech production and comprehension interact. Thus, pseudowords emerge as an outstanding tool for gauging the resonance between production and comprehension. Many pseudowords in the MALD database contain inflectional suffixes. Unlike many contemporary models, LDL captures the semantic commonalities of forms sharing inflectional exponents without using the linguistic construct of morphemes. We discuss methodological and theoretical implications for models of lexical processing and morphological theory. The results of this study, complementing those on real words reported in Baayen et al., (Complexity, 2019, 1–39, 2019), thus provide further evidence for the usefulness of LDL both as a cognitive model of the mental lexicon, and as a tool for generating new quantitative measures that are predictive for human lexical processing.
Subjects by Vocabulary

Microsoft Academic Graph classification: Computer science Pseudoword Semantics Cognitive model Speech production Natural language processing computer.software_genre computer Lexical decision task Lexicon Artificial intelligence business.industry business Mental lexicon Morpheme


Article, Auditory pseudowords, Auditory comprehension, Speech production, Linear discriminative learning, Morphology, Computational modeling, General Psychology, Psychology (miscellaneous), Arts and Humanities (miscellaneous), Developmental and Educational Psychology, Experimental and Cognitive Psychology

Related Organizations
Funded by
Wide Incremental learning with Discrimination nEtworks
  • Funder: European Commission (EC)
  • Project Code: 742545
  • Funding stream: H2020 | ERC | ERC-ADG
Validated by funder
Related to Research communities
Digital Humanities and Cultural Heritage