Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hyper Article en Lig...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Hyper Article en Ligne
Other literature type . 2018
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

“Please ReaderBench this text”: A multi-dimensional textual complexity assessment framework

Authors: Dascalu, Mihai; Crossley, Scott,; Mcnamara, Danielle,; Dessus, Philippe; Trausan-Matu, Stefan;

“Please ReaderBench this text”: A multi-dimensional textual complexity assessment framework

Abstract

International audience; A critical task for tutors is to provide learners with suitable reading materials in terms of difficulty. The challenge of this endeavor is increased by students' individual variability and the multiple levels in which complexity can vary, thus arguing for the necessity of automated systems to support teachers. This chapter describes ReaderBench, an open-source multi-dimensional and multilingual system that uses advanced Natural Language Processing techniques to assess textual complexity at multiple levels including surface-based, syntax, semantics and discourse structure. In contrast to other existing approaches, ReaderBench is centered on cohesion and makes extensive usage of two complementary models, i.e., Cohesion Network Analysis and the polyphonic model inspired from dialogism. The first model provides an in-depth view of discourse in terms of cohesive links, whereas the second one highlights interactions between points of view spanning throughout the discourse. In order to argue for its wide applicability and extensibility, two studies are introduced. The first study investigates the degree to which ReaderBench textual complexity indices differentiate between high and low cohesion texts. The ReaderBench indices led to a higher classification accuracy than those included in prior studies using Coh-Metrix and TAACO. In the second study, ReaderBench indices are used to predict the difficulty of a set of various texts. Although the high number of predictive indices (50 plus) accounted for less variance than previous studies, they make valuable contributions to our understanding of text due to their wide coverage.

Country
France
Keywords

learning analytics, [INFO.EIAH] Computer Science [cs]/Technology for Human Learning, [SHS.EDU]Humanities and Social Sciences/Education, [SHS.EDU] Humanities and Social Sciences/Education, comprehension modeling, automated essay scoring, [INFO.EIAH]Computer Science [cs]/Technology for Human Learning, data analytics, Natural Language Processing

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
  • citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    Powered byBIP!BIP!
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Funded by
EC| RAGE
Project
RAGE
Realising an Applied Gaming Eco-system
  • Funder: European Commission (EC)
  • Project Code: 644187
  • Funding stream: H2020 | RIA
Related to Research communities
Digital Humanities and Cultural Heritage
moresidebar

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.