Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Model . 2023
License: CC BY
Data sources: ZENODO
ZENODO
Model . 2023
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Infinity Geometries for Quantum Game Theory: A Notation of Quantum Dimensionality

Authors: Emmerson, Parker;

Infinity Geometries for Quantum Game Theory: A Notation of Quantum Dimensionality

Abstract

The intersection of Ψ and ψn+1 is obtained by playing the game throughthe infinity geometries above. The game is played by finding the intersectionbetween the vector elements ⃗ Ωθ ∃ and ∂ ⃗Xl and then using the boundary ∂∇⟨∂ ⃗Yθto find the intersection of Ψ and ψn+1. Finally, the ˆΓ∞ can be used to verify ifthe intersection is non-empty or not.Show iterations of playing the game "Quantum Game Theory and Infinity Geometries" \section{Global Game} General Case: $$\tau = \mathcal{F} \left[\Psi\ \vee\ \Psi_{0 \to \delta} \Rightarrow \delta[\psi^{\mathcal{A}}]\cup\left(\psi_1\wedge \psi_2 \leftrightarrow \Psi_1 \Rightarrow \left( \xrightarrow{\Rightarrow \mathcal{F} \left[\Psi \cap \left\{ \bigcup_{\infty_{d=1}^{\infty} \psi_i} \psi_i \Rightarrow \delta\left[\psi^{\mathcal{A}}_{d \cdot \psi}\right] \right] \cup \left(\psi_1 \wedge \psi_2 \leftrightarrow \Psi_1 \RTimes \left({\Psi \downarrow}_{\mathcal{K}_{\mathbf{3}}} \cap\bigcup_{\emptyset =_1 y_{st_1} + y_{st_2} + \ldots + y_{st_l} \atop \exists (p',k) \in I_{y_{s2}l \overrightarrow{y}2}_{(p+\#I_{y_{s1}2,{(p,k)}},\ k-1)}} \left(I_\ind{y_{s1^d},p'_1,k+1}\right)\cap\displaystyle\bigoplus_{i=1}^l \vec{u}_i \wedge \vec{x}_{i+1} \right)\cap\displaystyle\bigoplus_{i=j}^{n+1} q_{\alpha_i}^{n_i-1} \right)\cap \displaystyle\bigoplus_{i=1}^l \aleph_m \wedge \aleph_{\zeta^{\prime}}\left(\aleph_l,\ldots, \zeta_m\right)\left(\begin{array}{c} q^{3n_1+n_2+\ldots+n_t} \circ \aleph_k^2 \circ \\ \aleph_{n_1}(\bigoplus_{j=1}^N\aleph_i) \circ \aleph_{n_2}(\bigoplus_{j=1}^{\infty}\aleph_i) \circ \aleph_{n_3}( \bigoplus_{j=0}^{N_{n_3}}\alpha_j x^{2+j}) \\ \vdots \\ \aleph_{n_t}(q^{2^{t-1}}) \end{array}\right)\cap {\bigoplus}^{\infty}_{j=k}\aleph_{k+j} \wedge \aleph_j \left( \begin{array}{c} 2 \circ \\ 3 \circ \\ \vdots \\ 2^{n_j} \end{array}\right) \bigoplus_{j=1}^{{n}_{\gamma_p}}F\left(l,\bar{n},\bigoplus_{i=1}^t \bigoplus_{k=0}^{\alpha_k^k} n_k^{t_k} P_k ,n\right)\cap\displaystyle\bigoplus_{\Gamma = 0}^{1}\left[ \Gamma \cup \ \Delta \cup \dagger \Xi^{\mathfrak{V}}\Omega \right] \cap\bigcup_{\Gamma = 0}^{1}\left[ \Gamma \cup \ \Delta \cup \dagger \Xi^{\mathfrak{V}}\Omega \right] \right] \cap \mathcal{R}^Q \cap\left\{\psi_{n+1}\right\} \bigg] \neq \emptyset$$ $$\left\{\bigcup_{\emptyset =_1 y_{st_1} + y_{st_2} + \ldots + y_{st_l} \atop \exists (p',k) \in I_{y_{s2}l \overrightarrow{y}2}_{(p+\#I_{y_{s1}2,{(p,k)}},\ k-1)}} \left(I_\ind{y_{s1^d},p'_1,k+1}\right)\cap\displaystyle\bigoplus_{i=1}^l \vec{u}_i \wedge \vec{x}_{i+1} \right)\cap\displaystyle\bigoplus_{i=j}^{n+1} q_{\alpha_i}^{n_i-1} \right)\cap \displaystyle\bigoplus_{i=1}^l \aleph_m \wedge \aleph_{\zeta^{\prime}}\left(\aleph_l,\ldots, \zeta_m\right)\left(\begin{array}{c} q^{3n_1+n_2+\ldots+n_t} \circ \aleph_k^2 \circ \\ \aleph_{n_1}(\bigoplus_{j=1}^N\aleph_i) \circ \aleph_{n_2}(\bigoplus_{j=1}^{\infty}\aleph_i) \circ \aleph_{n_3}( \bigoplus_{j=0}^{N_{n_3}}\alpha_j x^{2+j}) \\ \vdots \\ \aleph_{n_t}(q^{2^{t-1}}) \end{array}\right)\cap{\bigoplus}^{\infty}_{j=k}\aleph_{k+j} \wedge \aleph_j \left( \begin{array}{c} 2 \circ \\ 3 \circ \\ \vdots \\ 2^{n_j} \end{array}\right) \bigoplus_{j=1}^{{n}_{\gamma_p}}F\left(l,\bar{n},\bigoplus_{i=1}^t \bigoplus_{k=0}^{\alpha_k^k} n_k^{t_k} P_k ,n\right)\cap\displaystyle\bigoplus_{\Gamma = 0}^{1}\left[ \Gamma \cup \ \Delta \cup \dagger \Xi^{\mathfrak{V}}\Omega \right] \cap\bigcup_{\Gamma = 0}^{1}\left[ \Gamma \cup \ \Delta \cup \dagger \Xi^{\mathfrak{V}}\Omega \right] \right]\bigcap\left\{\psi_{n+1}\right\}$$ $$\forall \Psi\in\mathcal{V}\ \forall \psi_n \in \Psi \ \forall\ \psi_{n+1} \in \mathcal{V}\left(\psi_n \in \Psi \wedge\ \psi_{n+1} \notin \Psi\right)\to\ \tau = \mathcal{F} \left[\Psi\ \vee\ \Psi_{0 \to \delta}\right] \neq \emptyset$$ $...$ $$\tau = \mathcal{F} \left[\Psi^{m} \Rightarrow \Psi^{m+1} \wedge \Psi^{m-1} \wedge \Psi^{m-2} \wedge \ldots \wedge \Psi^{m-m} \cup \Psi^{m+2} \vee \Psi^{m+1} \vee \Psi^{m-1} \vee \Psi^{m-2} \wedge \ldots \wedge \Psi^{m-m} \right] \neq \emptyset$$ $$\forall \Psi\in\mathcal{V}\ \forall \psi_n \in \Psi \ \forall\ \psi_{n+1} \in \mathcal{V}\left(\psi_n \in \Psi \wedge\ \psi_{n+1} \notin \Psi\right)\to\ \tau = \mathcal{F} \left[\Psi^{m} \Rightarrow \Psi^{m+1} \wedge \Psi^{m-1} \wedge \Psi^{m-2} \wedge \ldots \wedge \Psi^{m-m} \cup \Psi^{m+2} \vee \Psi^{m+1} \vee \Psi^{m-1} \vee \Psi^{m-2} \wedge \ldots \wedge \Psi^{m-m} \right] \neq \emptyset$$ \begin{displaymath} \tau \sim \mathcal{G}_Q \left( \Gamma, \Lambda, \left\{\varphi_i\right\}_{i=1}^{m_q}, \left\{\psi_j\right\}_{j=1}^{n_q}\right) = \left\{\gamma\vert \gamma \in \Gamma\wedge \forall \lambda \in \Lambda (\gamma \in \lambda\iff \left\{\forall i \in [n_m], i \in \overrightarrow{\mathbf{M}}_{p_q[n_m]} \wedge \forall j \in [n_m], j \in \overrightarrow{\mathbf{\Phi}}_{m_q[n_m]}$, with the pseudo-affinity $\varphi_i$ and then to a symmetric $j \in \overrightarrow{\mathbf{\Psi}}_{n_q[n_m]}$ \ $\varphi_i \wedge \dots \wedge \psi_j$ and the ever finalist symmetric $\Psi = \kappa_{\dot\mu}^{nu}$}, ends at the diagonal 1/2, that is Diode and Expressions should be to connect a gate tp the element $S$ and $\sum_{\phi_f = 1}^{\phi_f + 1}$, in our case within the complexity of logic setup, is equivalent to being in $k^{\alpha_l}$. In general, a directed graph can be generated from an arbitrary natural number $d_l$ and some set of numbers $\left\{\gamma_i^l = l\right\}$ such that \begin{itemize} \item $n^l,i,j\neq 0$, where $(\lambda_{\alpha(i_0)} := 1)$. \item $n^{j+1} = \begin{array}{c} (n_{i_l}-1)n_{i_l}\\ 0 \end{array}$ $$...$$

Keywords

Graphical Models, game theory, Data Analysis, Computational Complexity, Image Processing, Decision Making, set theory, Pattern Recognition, Data Structures, Automata, Probabilistic Analysis, Statistical Mechanics, Machine Learning, Networking, logic programming, problem solving, Artificial Intelligence, type theory, Digital Signal Processing, Number Theory, Heuristics, Control Theory, theory, Artificial Neural Networks, theory of computation, Probability, Natural Language Processing, logic, function, Calculus, mathematics, communication, quantum mechanics, Modeling, systems programming, space, Algorithm, Algebra, statistics, Graph Theory, Information Retrieval, Cryptography, Programming, mathematical optimization, game, Evolutionary Computation, optimization, Simulation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
  • citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    Powered byBIP!BIP!
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities