research product . 2021

Генерация текста на основе цепей Маркова для чат-бота

Open Access Russian
  • Published: 01 Jan 2021
  • Country: Russian Federation
Abstract
В работе рассмотрена математическая модель для интеллектуальной генерации текста для чат-бота. С использованием сервиса DialogFlow Google мы разработали чат-бот TPU_VKR. Для обучения чат-бота мы создали корпус вопросов-ответов, затем разработали сценарий ведения диалога в зависимости от выбора пользователя. С использованием API DialogFlow Google на языке Python были выгружены диалоги, которые стали основой для интеллектуальной генерации текста с использованием цепей Маркова. Для определения семантического сходства между фразами мы использовали косинусное расстояние. Результаты расчетов показали, что косинусное расстояние между оригинальной фразой и сгенерированными фразами лежит в пределах 0,44 от 0,96. The paper considers a mathematical model for intelligent generation of text for a chat bot. Using the DialogFlow Google service, we have developed the TPU_VKR chatbot. To train the chat bot, we created a corpus of questions and answers, then developed a script for conducting a dialogue, depending on the user's choice. Using the Google DialogFlow API in Python, dialogs were unloaded, which became the basis for intelligent text generation using Markov chains. We used cosine distance to determine the semantic similarity between phrases. The calculation results showed that the cosine distance between the original phrase and the generated phrases is within the range of 0.44 from 0.96.
Subjects
free text keywords: чат-боты, обработка естественного языка, система сквозной разработки, цепи Маркова, математические модели, сhat-bot, natural language processing, end-to-end development system, Markov chains, mathematical models, 01.04.02, 519.876 [004.773.6]
Related Organizations
Communities
  • Digital Humanities and Cultural Heritage
Any information missing or wrong?Report an Issue