Powered by OpenAIRE graph
Found an issue? Give us feedback


Country: France


3 Projects, page 1 of 1
  • Funder: EC Project Code: 887002
    Overall Budget: 1,511,780 EURFunder Contribution: 1,511,780 EUR

    Thanks to the confidence gained in the numerical simulation methods through correlation with a wide range of tests, nonlinear “realistic simulations” are taking more and more place in the design and sizing of aeronautical components during development and Certification phases. Airworthiness Authorities agree more and more to use the “virtual testing” or “realistic simulations” as means of compliance for all the items for which an acceptable level of validation of methodologies has been demonstrated. The main objective of the TIOC-Wing project is the development and the validation of criteria and a virtual testing methodology that will allow to predict the resistance of a representative stiffened composite wing panel subjected to the impact of tyre debris and the residual strength capability of the damaged structure. This will be reached by means of a test program focused on tyre debris impact events on composite aircraft structures and using the acquired experimental data to develop and validate numerical computational tools. The Consortium of TIOC-Wing project joins expertise in composite material knowledge, testing and manufacturing, in tyre tread impact testing and numerical simulations from 3 partners: SONACA, DGA-TA and CENAERO coming from Aeronautical Industry, referenced Test Laboratory in foreign objects impact capabilities and Research and Technology Center in advanced numerical simulations. TIOC-Wing will give the opportunity for the partners of the Consortium to enhance the level of expertise in the field of foreign objects impact aircraft vulnerability. For the industrial partners, the anticipation of such particular risks in the early stage of the development of an aircraft will reduce inherent costs due to possible modifications in a more advanced phase of the program, needed to satisfy the Certification requirements. This also enables to increase the competitiveness through innovation by integration of advanced computational tools in the sizing loop. Decrease of development tests will have as consequence the decrease of non recurrent costs. Finally, during future development of the next generation of aircraft thanks to less conservative approaches, TIOC-Wing offers the means for possible optimization of design concepts and weight savings strategies with reducing the CO2 emissions.

  • Funder: EC Project Code: 101021673
    Overall Budget: 6,065,820 EURFunder Contribution: 4,997,560 EUR

    Maritime Domain Awareness is the combination of activities, events and threats in the maritime environment that could have impact on marine activities and EU territory. During the past decades, advances in Information and Communication Technologies have provided better means to monitor and analyse vessel activity. Today private and public source of data such the Automatic Identification System or space related data can be combined with Vessel Traffic Services, Vessel Traffic Management Systems and Vessel Traffic Monitoring & Information Systems data enabling the development of value added information resulted by the combination of such data. European waters are navigated daily by some 12,000 vessels, which share their positions to avoid collisions, generating a huge number of positional messages every month. It is important that this overabundance of information will not overwhelm the marine operator in charge for decision-making. The challenge is twofold: on one side encourage the exchange of heterogeneous data among administration valorising the CISE network currently in place, on the other exploit at the best these datasets by means of automated processing in a way to minimise false alert that might results by an incorrect processing or interpretation of the results. PROMENADE will improve solutions for the vessel tracking, behaviour analysis and automatic anomaly detection by means of the application Artificial Intelligence (AI) and Big Data (BD) technologies, and to promote collaborative exchange of information between maritime surveillance authorities, shortening the time to market and assuring the compliance with legal and ethical regulations. An open, service-based toolkit implementing “state of art” AI / BD techniques also benefiting of HPC (High Performance Computing) platform is the core activity of the project. The project’s developments will be demonstrated and evaluated in 3 operational scenarios and 1 simulated defined by Border Guards Authorities.

  • Funder: EC Project Code: 824310
    Overall Budget: 21,993,900 EURFunder Contribution: 11,964,300 EUR

    Current design methodologies used to characterise ice accretion and its effects on air vehicle components and power plant systems are mainly based on empirical methods, comparative analysis, 2D simulation tools and past experience gained on in-service products. Due to the associated uncertainties, cautious design margins are used, leading to conservative and non-optimised solutions. As future air vehicle and propulsive system architectures introduce radical design changes, it will no longer be possible to rely on the existing design methodologies, making future development extremely difficult to accomplish efficiently and within short development cycles that are demanded by customers and desired by industry. These difficulties are increased by the recent changes in certification regulations, in particular for Supercooled Large Droplets (SLD), which require manufacturers to certify their products against more stringent requirements. Snow also remains a challenge, especially for turbine engines and APUs. ICE GENESIS will provide the European aeronautical industry with a validated new generation of 3D icing engineering tools (numerical simulation tools and upgraded test capabilities), addressing App C, O and snow conditions, for safe, efficient, right first time, and cost effective design and certification of future regional, business and large aircraft, rotorcraft and engines. ICE GENESIS will permit weather hazards to be more precisely evaluated and properly mitigated thanks to adapted design or optimised protection through either active or passive means. Furthermore, ICE GENESIS will pave the way for 3D digital tools to be used in the future as acceptable means of compliance by the regulation authorities. Overall, ICE GENESIS will contribute to flight safety, reduced certification costs and increased operability.

    Powered by Usage counts

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.