Powered by OpenAIRE graph
Found an issue? Give us feedback


Country: France
12 Projects, page 1 of 3
  • Funder: EC Project Code: 732423
    Overall Budget: 3,814,300 EURFunder Contribution: 3,814,300 EUR

    From government to consumer applications, personal identification is an ever increasing concern and demand. Fingerprints are the oldest and the most reliable features to be used because of their singularity and inalterability. The main goal of the PYCSEL project is to develop a low cost thin and large area fingerprint sensing surface enabling the personal identification via the development of a TOLAE technology, combining an organic sensor with a TFT matrix on a plastic foil. Based on the fact that personal recognition requires high resolution (500 dpi) and large (1 up to 4 fingers) sensors, the project focuses on the design, development and integration of a printed pyroelectric PVDF-based sensor layer on a IGZO TFT active matrix on foil and connected to an electronic driver and readout board, resulting in a thin fingerprint conformable sensor with no need for any optical bulky and/or costly extra components integration. Multiple fingerprints capture will be possible with the resulting large area hybrid system whose conformability allow easy further integration and ergonomic use especially for high growth and high value portable security uses. Therefore, it will offer differentiating properties for the portable governmental market as it will exhibit breakthrough in terms of mechanical robustness and conformability. Those advantages will also increase fingerprint sensors penetration into high volume automotive (personalized HMIs), machine tool (user-restricted HMI), buildings (access control) and consumer markets (PCs). The PYCSEL project will also entitle a transfer from LAB proof of concept to Technological validation in relevant environment. The final large area fingerprint sensor prototype will be able to acquire 4 fingers at a time, with an objective resolution of 500 dpi, and will allow the running of biometric acquisition campaigns as well as demonstration of safety control in automotive application by end-users.

  • Funder: EC Project Code: 731591
    Overall Budget: 3,528,640 EURFunder Contribution: 3,478,750 EUR

    Implementing cryptography on embedded devices is an ongoing challenge: every year new implementation flaws are discovered and new attack paths are being used by real life adversaries. Whilst cryptography can guarantee many security properties, it crucially depends on the ability to keep the used keys secret even in face of determined adversaries. Over the last two decades a new type of adversary has emerged, able to obtain, from the cryptographic implementation, side channel leakage such as recording of response times, power or EM signals, etc. To account for such adversaries, sophisticated security certification and evaluation methods (Common Criteria, EMVCo, FIPS…) have been established to give users assurance that security claims have withstood independent evaluation and testing. Recently the reliability of these evaluations has come into the spotlight: the Taiwanese citizen card proved to be insecure, and Snowden’s revelations about NSA's tampering with FIPS standards eroded public confidence. REASSURE will (1) improve the efficiency and quality of all aspects of certification using a novel, structured detect-map-exploit approach that will also improve the comparability of independently conducted evaluations, (2) cater for emerging areas such as the IoT by automating leakage assessment practices in order to allow resistance assessment without immediate access to a testing lab, (3) deliver tools to stakeholders, such as reference data sets and an open-source leakage simulator based on instruction-level profiles for a processor relevant for the IoT, (4) improve existing standards by actively pushing the novel results to standardization bodies. REASSURE's consortium is ideal to tackle such ambitious tasks. It features two major circuits manufacturers (NXP, IDEMIA), a highly respected side channel testing lab (Riscure), an engaged governmental representative (ANSSI), and two of the most prominent research institutions in this field (UCL, University of Bristol).

    Powered by Usage counts
  • Funder: EC Project Code: 700085
    Overall Budget: 2,247,000 EURFunder Contribution: 2,247,000 EUR

    ARIES main goal is to deliver a comprehensive framework for reliable e-identity ecosystem comprising new technologies, processes and security features that ensure highest levels of quality in eID based on trustworthy security documents and biometrics for highly secure and privacy-respecting physical and virtual identity management, with the specific aim to tangibly achieve a reduction in levels of identity theft, fraud and associated crimes. The set of solutions will be designed to achieve required levels of multi-party trust with efficiency, ease of adoption and convenience for all end-users (citizens, law enforcement, businesses), consolidating Europe as world leader in enhanced identity-based services as a basis to boost the competitiveness of its economy. ARIES will leverage virtual and mobile IDs cryptographically derived from strong eID documents in order to prevent identity theft and related crimes in the physical (e.g. an airport) and virtual (e.g eCommerce) domains. Both, the derivation process, and the derived IDs will be univocally linked to citizens' biometric features, increasing the level of identity assurance during the credential issuance process and during authentication. Highest data protection standards will be followed to provide digital privacy-preserving features. Thus, the project will provide a global approach for ID Ecosystem in Europe to address European-specific concerns to improve identity, trust and security, and better support the law enforcement to address the new threats in cybersecurity while achieving far-reaching socio-economic positive impacts. ARIES will demonstrate its outcomes and the levels of identity prevention reduction achieved in two use case demonstrators (secure eCommerce and identity virtualization for secure travel), covering the complete vision of virtual id ecosystem and its practical application.

    Powered by Usage counts
  • Funder: EC Project Code: 644412
    Overall Budget: 6,470,620 EURFunder Contribution: 4,412,060 EUR

    The current trend for data placement shows a steady shift towards "the cloud". The advent of cloud storage and computation services however comes at the expense of data security and user privacy. To remedy this, customers nowadays call for end-to-end security whereby only end-users and authorized parties have access to their data and no-one else. This is especially true after the outbreak of data breaches and global surveillance programs last year. In the TREDISEC project, we address this problem and we develop systems and techniques which make the cloud a secure and efficient heaven to store data. We plan to step away from a myriad of disconnected security protocols or cryptographic algorithms, and to converge on a single framework where all objectives are met. More specifically, TREDISEC addresses the confidentiality and integrity of outsourced data in the presence of a powerful attacker who controls the entire network. In addition, our proposed security primitives support data compression and data deduplication, while providing the necessary means for cloud providers to efficiently search and process encrypted data. By doing so, TREDISEC aims at creating technology that will impact existing businesses and will generate new profitable business opportunities long after the project is concluded.

    Powered by Usage counts
  • Funder: EC Project Code: 740477
    Overall Budget: 8,491,170 EURFunder Contribution: 6,926,370 EUR

    Nowadays coordinated and every time more complex terrorist attacks are shocking the world. Due to the progressive rely of industrial sector and many critical infrastructures (CI) (e.g. EU ports) in ICT systems, the impact of a coordinated physical attack, a deliberate disruption of critical automation systems or even a combined scenario including both kind of attacks, could have disastrous consequences for the European Member States’ regions and social wellbeing in general. Taking into account this fact and this real threat on EU ports as one of the main CI in Europe, SAURON project proposes the holistic situation awareness concept as an integrated, scalable and yet installation-specific solution for protecting EU ports and its surroundings. This solution combines the more advanced physical SA features with the newest techniques in prevention, detection and mitigation of cyber-threats, including the synthetic cyber space understanding through the use of new visualization techniques (immersive interfaces, cyber 3D models and so on). In addition, a Hybrid Situation Awareness (HSA) application capable of determine the potential consequences of any threat will show the potential cascading effect of a detected threat in the two different domains (physical and cyber). On the other hand, through SAURON approach the public in the surroundings and the rescue/security teams will be able to be informed on any potential event/situation that could put in risk their integrity. Thus, SAURON proposes as main objective to ensure an adequate level of both physical and cyber protection for the EU ports and limiting, as far as possible, the detrimental effects for the society and citizens of a combined attack (physical & cyber) to an EU port. Reducing the vulnerabilities of EU ports, as one of the main European critical infrastructures and increasing their systemic resilience in the face of a physical, cyber or combined threat will be also part of the SAURON main objective.

    Powered by Usage counts
Powered by OpenAIRE graph
Found an issue? Give us feedback

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.