Powered by OpenAIRE graph
Found an issue? Give us feedback


Universitat Politècnica de València
Country: Spain
Top 100 values are shown in the filters
Results number
412 Projects, page 1 of 83
  • Funder: EC Project Code: 895526
    Overall Budget: 160,932 EURFunder Contribution: 160,932 EUR

    Contaminant events disrupt stability and resilience of increasingly vulnerable soil and groundwater. Identifying where, when and how much contaminant spill is released into aquifers is critical for strengthening the competitiveness of EU in risk-reduction management, and Forensic Hydrogeology, a growing discipline that applies scientific knowledge in legal resolutions. Existing model solutions estimate the origin and affected area, but numerical challenges impose too restrictive assumptions to properly account for multiple sources or suitable aquifer characterization. The scientific goal of FORENSHYD is to develop a novel, flexible and reliable ensemble Kalman filter data assimilation method (EnKF) for the optimal identification of contaminant sources and occurrence of reactive pollutants in near-actual conditions. Latest assessed developments of Dr. Gómez-Hernández set EnKF as an excellent optimization tool for the simultaneous identification of the spatial variability of conductivities, the location, and the release function of polluting sources. A step toward coupling the algorithm with machine learning techniques may overcome ill-posed solutions, stemmed from nonlinearities between parameters and variables in the state equation, to solve kinetic-controlled reactive transport problems and to optimize data collection in groundwater observation network systems, a topic of renewal interest in administration and industrial sector. We test spurious effects of aquifer heterogeneity, reactive parameters, and initial/boundary conditions in synthetic scenarios, sandbox experiments and two demonstration sites. Transfer of this novel technology in well-reported, practical and universal open source packages will reinforce the leadership and employability in the global market of intersectorial and interdisciplinary European stakeholders. The societal value of FORENSHYD is to improve mitigation strategies, and clarify environmental liability, in liaises with Horizon 2020.

  • Funder: EC Project Code: 334257
    Powered by Usage counts
  • Funder: EC Project Code: 101097092
    Overall Budget: 2,491,250 EURFunder Contribution: 2,491,250 EUR

    For over 5 decades, digital electronics has covered the increasing demand for computing power thanks to a periodic doubling of transistor density in integrated circuits. Currently, such scaling law is reaching its fundamental limit, leading to the emergence of a large gamut of applications that cannot be supported by digital electronics, specifically, those that involve real-time analog multi-data processing, e.g., medical diagnostic imaging, drug design and robotic control, among others. Here, an analog computing approach implemented in a reconfigurable non-electronic technology such as programmable integrated photonics (PIP) can be more efficient than digital electronics to perform these emerging applications. However, actual computing models were not conceived to extract the benefits of PIP. The aim of ANBIT is to develop an entirely new class of computation theory – termed Analog Photonic Computation (APC) – specifically designed to unleash the full potential of PIP technology. The core concept revolves around the idea of performing analog operations on a new unit of information, the analog bit or anbit, conceived as a two-dimensional analog function and matched to the building block of PIP circuits. ANBIT will reach its objectives by: 1) developing the theory of APC based on operations (gates) of anbits, 2) translating the principles of APC to the design of PIP circuits by concatenating single- and multi-anbit gates, 3) fabricating, packaging, testing and validating silicon PIP chips capable of implementing complex APC architectures, 4) designing, coordinating, setting and performing experiments that will prove the unique potential of APC in computational and signal processing applications with huge takeover. ANBIT will deliver a new computing paradigm that extracts the full potential of PIP technology, which in turn will have a crucial impact on fundamental and applied research and on our information society.

  • Funder: EC Project Code: 101000396
    Overall Budget: 2,509,380 EURFunder Contribution: 2,509,380 EUR

    Extreme events often cause local-initial damage to the critical elements of building structures, followed by a cascade of further failures in the rest of the building; a phenomenon known as “progressive collapse”. Current design philosophies are based on giving buildings extensive continuity, so that when a critical element fails its load can be re-distributed among the rest of the structure. However, in certain situations (e.g. initial failure of several columns) this extensive continuity introduces undesirable effects and actually increases the risk of progressive collapse. Segmenting a building into individual units connected only by means of fuses would avoid a failure in one zone propagating to others. While such fuses would provide continuity for normal loads or small local-initial failure, they would “isolate” the different parts of the building when otherwise the forces generated by the initial failure would pull down the rest of the structure. Although fuse segmentation is probably the only alternative that can fill the gaps in the present design philosophies, so far, no studies have been carried out on the possibility of applying it to buildings. Endure’s overall aim is to develop a novel fuse-based segmentation design approach to limit or arrest the propagation of failures in building structures subjected to extreme events. The project will be multidisciplinary and highly ambitious, and will achieve its overall aim by: 1) Developing a performance-based approach for the design of fuse-segmented buildings; 2) Designing, manufacturing and testing fuses for segmenting buildings; and 3) Implementing fuses in segmented realistic building prototypes and testing and validating the new fuse-based approach in these structures. Endure will open up a new research area and design approach, and also deliver novel construction procedures. The project will lead to safer buildings, especially in the case of extreme events with severe consequences for building integrity.

    Powered by Usage counts
  • Funder: EC Project Code: 741415
    Overall Budget: 2,494,440 EURFunder Contribution: 2,494,440 EUR

    Information and communication technology (ICT) systems are expanding at an awesome pace in terms of capacity demand, number of connected end-users and required infrastructure. To cope with these rapidly increasing growth rates there is a need for a flexible, scalable and future-proof solution for seamlessly interfacing the wireless and photonic segments of communication networks. RF or Microwave photonics (MWP), is the best positioned technology to provide the required flexible, adaptive and future-proof physical layer with unrivalled characteristics. Its widespread use is however limited by the high-cost, non-compact and heavy nature of its systems. Integrated Microwave Photonics (IMWP) targets the incorporation of MWP functionalities in photonic chips to obtain cost-effective and reduced space, weight and power consumption systems. IMWP has demonstrated some functionalities in through application specific photonic circuits (ASPICs), yielding almost as many technologies as applications and preventing cost-effective industrial manufacturing processes. A radically different approach is based on a universal or general-purpose programmable photonic integrated circuit (PIC) capable of performing with the same hardware architecture the main required functionalities. The aim of this project is the design, implementation and validation of such processor based on the novel concept of photonic waveguide mesh optical core and its integration in a Silicon Photonics chip. Its three specific objectives are: (1) The architecture design and optimization of a technology-agnostic universal MWP programmable signal processor, (2) The chip mask design, fabrication and testing of the processor and (3) The experimental demonstration and validation of the processor. Targeting record values in bandwidth and footprint its potential impact will be very large by unlocking bandwidth bottlenecks and providing seamless interfacing of the fiber and wireless segments in future ICT systems.

    Powered by Usage counts

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.