Powered by OpenAIRE graph
Found an issue? Give us feedback

XJTLU

Xi’an Jiaotong-Liverpool University
Country: China (People's Republic of)
11 Projects, page 1 of 3
  • Funder: UKRI Project Code: EP/R013608/1
    Funder Contribution: 100,958 GBP

    The plasma synthetic jet actuator (PSJA) is a type of active flow control device. It is able to generate powerful jet at high repetition rate. The PSJA has promising control capability in high-speed flow applications, especially in alleviating the adverse effects of shock wave boundary layer interaction. Despite the significant improvements made so far, the PSJA still suffers problem such as the requirement of multiple high-voltage power units if a PSJA array is under use. Very recently, the novel voltage relay circuit (VRC) is proposed through the principal investigator (PI)'s collaborative project under the joint funding from the Royal Society and Natural Science Foundation of China. The new VRC concept allows multiple PSJAs to be driven through one single high-voltage power unit, which is a technological breakthrough leading to the practical application of PSJA. The VRC-driven PSJA array is thus proposed as the flow control method to manipulate the transonic shock boundary layer interaction (TSWBLI), which underpins further improvement of the performances of aircraft and its propulsion system. In the UK, the Aerospace Technology Institute (ATI) explicitly includes 'pushing the shock buffeting boundary' as a strategically important target in the development plan for UK aerospace industries for the coming decade. The research outcome will thus contribute to the ATI target and help consolidate the leading position of UK aerospace industry. The preliminary experiment carried by the PI and his collaborator reveals that the VRC-driven PSJA array is effective in shock modulation. Moreover, the transonic wind tunnel at City, University of London is being strengthened to experiment aerodynamic problems in the transonic regime through the support of National Wind Tunnel Facility. Therefore, funding is applied to implement the VRC-driven PSJA array into the control of TSWBLI. The research outcome is going to exert direct impact to the UK aerospace sector. Although the VRC-driven PSJA is used in the transonic flow in the present project, it is also readily useful in supersonic applications where shock wave boundary layer interaction dominates.

    visibility61
    visibilityviews61
    downloaddownloads198
    Powered by Usage counts
    more_vert
  • Funder: UKRI Project Code: EP/G063044/1
    Funder Contribution: 517,239 GBP

    Coal-fired generation accounts for 82% of China's total power supply. Even in the UK the coal-fired generation still accounts for 35% . Because of this, the efficient and clean burn of coal is of great importance to the energy sector. Coal gasification and the proper treatment of the generated syngas before the combustion can reduce emissions significantly through alternative power generation system such as Integrated Gasification Combined Cycle (IGCC). The syngas usually contains varying amounts of hydrogen. The existence of hydrogen in the syngas may cause undesirable flame flashback phenomenon, in which the flame propagates into the burner. The fast flame propagation speed of hydrogen can travel further upstream and even attached to the wall of the combustor. The strong heat transfer to the wall may damage the combustor components. The consequence can be very costly. Because of this, many existing combustors are not suitable for the burning of syngas. To overcome this bottle neck, in-depth knowledge of the flame dynamics of hydrogen enriched fuel is essential, which is still not available. There is also a need to study the flame-wall interactions, which are important to the life span of a combustor but have not been fully understood.In order to understand the complex combustion process of hydrogen enriched fuels, combined efforts from experimentation and numerical simulations are essential. This joint project will investigate the flame dynamics including the flame flashback phenomenon, combustion instability, and flame-wall interactions. The flame dynamics will be investigated for different types of burners with fuel variability. Due to the limitation of optical access, the flame measurements need to be complimented by high-fidelity numerical simulations. The dynamic behaviour of the flame will be experimentally captured by the innovative combustion diagnostic tools developed at Manchester. To complement the experimental work, advanced numerical simulations based on direct numerical simulation and large eddy simulation will be performed at Brunel. The proposed research activities are based on the existing tools developed by the investigators and preliminary studies that have already been carried out by the applicants. The project will further develop innovative combustion diagnostic and advanced numerical tools. The knowledge to be gained from the project research and the physical models to be developed including improved near-wall flow, heat transfer and combustion models can lead to better combustion control and combustor design. The joint project will enhance the understanding on combustion of hydrogen enriched fuels with scientific advancement in flame measurements and near-wall flow modelling. More importantly, it will enhance the development of technologies for clean combustion of hydrogen enriched fuels, leading to a clean coal industry.Collaboration This project has excellent synergy between the UK and Chinese partners. Both partners are linked to BP. The Manchester group is directly supported by BP AE to work on combustion instability. Tsinghua University is one of the few identified links of BP in China. The involvement of Siemens Industrial Turbomachinery Ltd will ensure the maximum input from a gas turbine manufacturer's point of view.Management Both partners have long term informal research connections and the well established communications will ensure the smoothing running of the project. The PIs are well experienced in working with large research consortia. Dr Zhang has close collaboration with the industrial partners.Novelty Valuable physical insight into the potentially damaging combustion phenomena of hydrogen enriched fuels such as syngas burning will be provided; Original combustion diagnostics will be developed; Advanced numerical simulations will be performed; Near-wall flow, heat transfer and combustion models for unsteady reacting flows will be developed.

    visibility25
    visibilityviews25
    downloaddownloads100
    Powered by Usage counts
    more_vert
  • Funder: UKRI Project Code: EP/G062714/1
    Funder Contribution: 340,177 GBP

    Abstracts are not currently available in GtR for all funded research. This is normally because the abstract was not required at the time of proposal submission, but may be because it included sensitive information such as personal details.

    more_vert
  • Funder: UKRI Project Code: EP/G062714/2
    Funder Contribution: 292,661 GBP

    Coal-fired generation accounts for 82% of China's total power supply. Even in the UK the coal-fired generation still accounts for 35% . Because of this, the efficient and clean burn of coal is of great importance to the energy sector. Coal gasification and the proper treatment of the generated syngas before the combustion can reduce emissions significantly through alternative power generation system such as Integrated Gasification Combined Cycle (IGCC). The syngas usually contains varying amounts of hydrogen. The existence of hydrogen in the syngas may cause undesirable flame flashback phenomenon, in which the flame propagates into the burner. The fast flame propagation speed of hydrogen can travel further upstream and even attached to the wall of the combustor. The strong heat transfer to the wall may damage the combustor components. The consequence can be very costly. Because of this, many existing combustors are not suitable for the burning of syngas. To overcome this bottle neck, in-depth knowledge of the flame dynamics of hydrogen enriched fuel is essential, which is still not available. There is also a need to study the flame-wall interactions, which are important to the life span of a combustor but have not been fully understood.In order to understand the complex combustion process of hydrogen enriched fuels, combined efforts from experimentation and numerical simulations are essential. This joint project will investigate the flame dynamics including the flame flashback phenomenon, combustion instability, and flame-wall interactions. The flame dynamics will be investigated for different types of burners with fuel variability. Due to the limitation of optical access, the flame measurements need to be complimented by high-fidelity numerical simulations. The dynamic behaviour of the flame will be experimentally captured by the innovative combustion diagnostic tools developed at Manchester. To complement the experimental work, advanced numerical simulations based on direct numerical simulation and large eddy simulation will be performed at Brunel. The proposed research activities are based on the existing tools developed by the investigators and preliminary studies that have already been carried out by the applicants. The project will further develop innovative combustion diagnostic and advanced numerical tools. The knowledge to be gained from the project research and the physical models to be developed including improved near-wall flow, heat transfer and combustion models can lead to better combustion control and combustor design. The joint project will enhance the understanding on combustion of hydrogen enriched fuels with scientific advancement in flame measurements and near-wall flow modelling. More importantly, it will enhance the development of technologies for clean combustion of hydrogen enriched fuels, leading to a clean coal industry.Collaboration This project has excellent synergy between the UK and Chinese partners. Both partners are linked to BP. The Manchester group is directly supported by BP AE to work on combustion instability. Tsinghua University is one of the few identified links of BP in China. The involvement of Siemens Industrial Turbomachinery Ltd will ensure the maximum input from a gas turbine manufacturer's point of view.Management Both partners have long term informal research connections and the well established communications will ensure the smoothing running of the project. The PIs are well experienced in working with large research consortia. Dr Zhang has close collaboration with the industrial partners.Novelty Valuable physical insight into the potentially damaging combustion phenomena of hydrogen enriched fuels such as syngas burning will be provided; Original combustion diagnostics will be developed; Advanced numerical simulations will be performed; Near-wall flow, heat transfer and combustion models for unsteady reacting flows will be developed.

    visibility3
    visibilityviews3
    downloaddownloads4
    Powered by Usage counts
    more_vert
  • Funder: UKRI Project Code: EP/F061188/1
    Funder Contribution: 360,581 GBP

    Co-firing biomass with coal at existing power plant is widely adopted as one of the main technologies for reducing CO2 emissions in the UK and the rest of the world. Despite various advances in developing the co-firing technology, a range of technological issues remain to be resolved due to the inherent differences in the physical and combustion properties between biomass and coal. Typical problems associated with co-firing include poor flame stability, low thermal efficiency, and slagging and fouling. This project aims to achieve the optimisation of biomass/coal co-firing processes through a combination of advanced fuel characterisation, integrated measurement and computational modelling. In the area of fuel characterisation, both thermo-gravimetric analysis and automated image analysis techniques in conjunction with conventional fuel analysis methods will be combined to achieve comprehensive characterisation of biomass and biomass/coal blends from a wide range of sources. Because of the physical differences between biomass and coal the fluid dynamics of the biomass/coal/air three-phase flow in the fuel lines feeding the burners is rather complex and very little is known in this area of science. It is proposed in this project to develop an instrumentation technology capable of measuring the basic parameters of the biomass/coal particles in the fuel lines on an on-line continuous basis. The system will allow the monitoring and optimisation of the fuel delivery to the burners. The instrumentation technology combines novel electrostatic sensing and digital imaging principles and embedded system design methodology. The flow parameters to be measured include particle size distribution, velocity and concentration of biomass/coal particles as well as biomass proportion in the blend. It is known that biomass addition and variations in coal diet can have a significant impact on combustion stability and co-firing efficiency. As part of this project, a system incorporating digital imaging devices and solid state optical detectors will be developed for the continuous monitoring of the burner conditions and flame stability under co-firing conditions. Computational modelling provides a powerful supplementary tool to experimental measurement in the studies of three-phase flow and combustion flame characteristics. Computational Fluid Dynamic (CFD) modelling techniques will be applied in this project to investigate the dynamic behaviours of irregular biomass particles and their blends with pulverised coal in the fuel lines and associated combustion characteristics particularly flame stability. CFD modelling techniques will also be applied to study the impact of biomass addition on ash deposition and formation of slagging and fouling. The measurements from the flow metering and flame monitoring systems will be integrated to establish and validate the CFD models. Meanwhile, the modelling results will be used to interpret the practical measurements under a wide range of conditions.The project consortium comprises three academic centres of expertise including Kent, Leeds and Nottingham. Collaborative arrangements with three leading research centres in China have been established in addition to support from power generation organizations in the UK and China. Following the design and implementation of the instrumentation systems and computational modeling work, experimental work will be performed on combustion test rigs in both countries. The instrumentation systems and computational models will then be scaled up for full scale power stations. Demonstration trials will be undertaken to assess the efficacy of the advanced fuel characterisation techniques, the performance and operability of the instrumentation systems, and the validity of the computational models under a range of co-firing conditions. Recommendations for the optimization of co-firing processes at existing power plant and on the design of new plant will be reported.

    more_vert
Powered by OpenAIRE graph
Found an issue? Give us feedback

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.