research data . Dataset . 2019

doclevel-MT-benchmark-discoMT2019

Tiedemann, Jörg; Scherrer, Yves;
Open Access English
  • Published: 01 Jan 2019
  • Publisher: Zenodo
Abstract
{"references": ["Scherrer, Tiedemann and Lo\u00e1iciga: \"Analysing concatenation approaches to document-level NMT in two different domains\", in Proceedings of DiscoMT2019 at EMNLP 2019, Hong-Kong"]}
Subjects
free text keywords: natural language processing, machine translation, language technology, NLP, natural language processing, machine translation, language technology, NLP
Related Organizations
Funded by
EC| MeMAD
Project
MeMAD
Methods for Managing Audiovisual Data: Combining Automatic Efficiency with Human Accuracy
  • Funder: European Commission (EC)
  • Project Code: 780069
  • Funding stream: H2020 | RIA
,
EC| FoTran
Project
FoTran
Found in Translation – Natural Language Understanding with Cross-Lingual Grounding
  • Funder: European Commission (EC)
  • Project Code: 771113
  • Funding stream: H2020 | ERC | ERC-COG
Communities
Digital Humanities and Cultural Heritage
Download from
Zenodo
Dataset . 2019
Provider: Datacite
Zenodo
Dataset . 2019
Provider: Zenodo
Any information missing or wrong?Report an Issue