Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Digital Humanities and Cultural Heritage. Are you interested to view more results? Visit OpenAIRE - Explore.
1 Research products

  • Digital Humanities and Cultural Heritage
  • Publications
  • Research data
  • Research software
  • 2021-2021
  • Software
  • English
  • COVID-19

Date (most recent)
arrow_drop_down
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Spitale, Giovanni; Germani, Federico; Biller-Andorno, Nikola;

    The purpose of this tool is performing NLP analysis on Telegram chats. Telegram chats can be exported as .json files from the official client, Telegram Desktop (v. 2.9.2.0). The files are parsed, the content is used to populate a message dataframe, which is then anonymized. The software calculates and displays the following information: user count (n of users, new users per day, removed users per day); message count (n and relative frequency of messages, messages per day); autocoded messages (anonymized message dataframe with code weights assigned to each message based on a customizable set of regex rules); prevalence of codes (n and relative frequency); prevalence of lemmas (n and relative frequency); prevalence of lemmas segmented by autocode (n and relative frequency); mean sentiment per day; mean sentiment segmented by autocode. The software outputs: messages_df_anon.csv - an anonymized file containing the progressive id of the message, the date, the univocal pseudonym of the sender, and the text; usercount_df.csv - user count dataframe; user_activity_df.csv - user activity dataframe; messagecount_df.csv - message count dataframe; messages_df_anon_coded.csv - an anonymized file containing the progressive id of the message, the date, the univocal pseudonym of the sender, the text, the codes, and the sentiment; autocode_freq_df.csv - general prevalence of codes; lemma_df.csv - lemma frequency; autocode_freq_df_[rule_name].csv - lemma frequency in coded messages, one file per rule; daily_sentiment_df.csv - daily sentiment; sentiment_by_code_df.csv - sentiment segmented by code; messages_anon.txt - anonymized text file generated from the message data frame, for easy import in other software for text mining or qualitative analysis; messages_anon_MaxQDA.txt - anonymized text file generated from the message data frame, formatted specifically for MaxQDA (to track speakers and codes). Dependencies: pandas (1.2.1) json random os re tqdm (4.62.2) datetime (4.3) matplotlib (3.4.3) Spacy (3.1.2) + it_core_news_md wordcloud (1.8.1) Counter feel_it (1.0.3) torch (1.9.0) numpy (1.21.1) transformers (4.3.3) This code is optimized for Italian, however: Lemma analysis is based on spaCy, which provides several other models for other languages ( https://spacy.io/models ) so it can easily be adapted. Sentiment analysis is performed using FEEL-IT: Emotion and Sentiment Classification for the Italian Language (Kudos to Federico Bianchi <f.bianchi@unibocconi.it>; Debora Nozza <debora.nozza@unibocconi.it>; and Dirk Hovy <dirk.hovy@unibocconi.it>). Their work is specific for Italian. To perform sentiment analysis in other languages one could consider nltk.sentiment The code is structured in a Jupyter-lab notebook, heavily commented for future reference. The software comes with a toy dataset comprised of Wikiquotes copy-pasted in a chat created by the research group. Have fun exploring it. {"references": ["Bianchi F, Nozza D, Hovy D. FEEL-IT: Emotion and Sentiment Classification for the Italian Language. In: Proceedings of the 11th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis. Association for Computational Linguistics; 2021. https://github.com/MilaNLProc/feel-it"]}

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility372
    visibilityviews372
    downloaddownloads16
    Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Digital Humanities and Cultural Heritage. Are you interested to view more results? Visit OpenAIRE - Explore.
1 Research products
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Spitale, Giovanni; Germani, Federico; Biller-Andorno, Nikola;

    The purpose of this tool is performing NLP analysis on Telegram chats. Telegram chats can be exported as .json files from the official client, Telegram Desktop (v. 2.9.2.0). The files are parsed, the content is used to populate a message dataframe, which is then anonymized. The software calculates and displays the following information: user count (n of users, new users per day, removed users per day); message count (n and relative frequency of messages, messages per day); autocoded messages (anonymized message dataframe with code weights assigned to each message based on a customizable set of regex rules); prevalence of codes (n and relative frequency); prevalence of lemmas (n and relative frequency); prevalence of lemmas segmented by autocode (n and relative frequency); mean sentiment per day; mean sentiment segmented by autocode. The software outputs: messages_df_anon.csv - an anonymized file containing the progressive id of the message, the date, the univocal pseudonym of the sender, and the text; usercount_df.csv - user count dataframe; user_activity_df.csv - user activity dataframe; messagecount_df.csv - message count dataframe; messages_df_anon_coded.csv - an anonymized file containing the progressive id of the message, the date, the univocal pseudonym of the sender, the text, the codes, and the sentiment; autocode_freq_df.csv - general prevalence of codes; lemma_df.csv - lemma frequency; autocode_freq_df_[rule_name].csv - lemma frequency in coded messages, one file per rule; daily_sentiment_df.csv - daily sentiment; sentiment_by_code_df.csv - sentiment segmented by code; messages_anon.txt - anonymized text file generated from the message data frame, for easy import in other software for text mining or qualitative analysis; messages_anon_MaxQDA.txt - anonymized text file generated from the message data frame, formatted specifically for MaxQDA (to track speakers and codes). Dependencies: pandas (1.2.1) json random os re tqdm (4.62.2) datetime (4.3) matplotlib (3.4.3) Spacy (3.1.2) + it_core_news_md wordcloud (1.8.1) Counter feel_it (1.0.3) torch (1.9.0) numpy (1.21.1) transformers (4.3.3) This code is optimized for Italian, however: Lemma analysis is based on spaCy, which provides several other models for other languages ( https://spacy.io/models ) so it can easily be adapted. Sentiment analysis is performed using FEEL-IT: Emotion and Sentiment Classification for the Italian Language (Kudos to Federico Bianchi <f.bianchi@unibocconi.it>; Debora Nozza <debora.nozza@unibocconi.it>; and Dirk Hovy <dirk.hovy@unibocconi.it>). Their work is specific for Italian. To perform sentiment analysis in other languages one could consider nltk.sentiment The code is structured in a Jupyter-lab notebook, heavily commented for future reference. The software comes with a toy dataset comprised of Wikiquotes copy-pasted in a chat created by the research group. Have fun exploring it. {"references": ["Bianchi F, Nozza D, Hovy D. FEEL-IT: Emotion and Sentiment Classification for the Italian Language. In: Proceedings of the 11th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis. Association for Computational Linguistics; 2021. https://github.com/MilaNLProc/feel-it"]}

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility372
    visibilityviews372
    downloaddownloads16
    Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph