Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Digital Humanities and Cultural Heritage. Are you interested to view more results? Visit OpenAIRE - Explore.

  • Digital Humanities and Cultural Heritage
  • Publications
  • Article
  • European Commission
  • KHRESMOI
  • Journal of Biomedical Informatics

Date (most recent)
arrow_drop_down
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: De-Arteaga, Maria; Eggel, Ivan; Do, Bao; Rubin, Daniel; +2 Authors

    Display Omitted First study of log files of Stanford radiology search engine.Comparison between web search and hospital internal system search.Analysis of user behaviour, useful for improving search engines. Information search has changed the way we manage knowledge and the ubiquity of information access has made search a frequent activity, whether via Internet search engines or increasingly via mobile devices. Medical information search is in this respect no different and much research has been devoted to analyzing the way in which physicians aim to access information. Medical image search is a much smaller domain but has gained much attention as it has different characteristics than search for text documents. While web search log files have been analysed many times to better understand user behaviour, the log files of hospital internal systems for search in a PACS/RIS (Picture Archival and Communication System, Radiology Information System) have rarely been analysed. Such a comparison between a hospital PACS/RIS search and a web system for searching images of the biomedical literature is the goal of this paper. Objectives are to identify similarities and differences in search behaviour of the two systems, which could then be used to optimize existing systems and build new search engines.Log files of the ARRS GoldMiner medical image search engine (freely accessible on the Internet) containing 222,005 queries, and log files of Stanford's internal PACS/RIS search called radTF containing 18,068 queries were analysed. Each query was preprocessed and all query terms were mapped to the RadLex (Radiology Lexicon) terminology, a comprehensive lexicon of radiology terms created and maintained by the Radiological Society of North America, so the semantic content in the queries and the links between terms could be analysed, and synonyms for the same concept could be detected. RadLex was mainly created for the use in radiology reports, to aid structured reporting and the preparation of educational material (Lanlotz, 2006) 1. In standard medical vocabularies such as MeSH (Medical Subject Headings) and UMLS (Unified Medical Language System) specific terms of radiology are often underrepresented, therefore RadLex was considered to be the best option for this task.The results show a surprising similarity between the usage behaviour in the two systems, but several subtle differences can also be noted. The average number of terms per query is 2.21 for GoldMiner and 2.07 for radTF, the used axes of RadLex (anatomy, pathology, findings, ?) have almost the same distribution with clinical findings being the most frequent and the anatomical entity the second; also, combinations of RadLex axes are extremely similar between the two systems. Differences include a longer length of the sessions in radTF than in GoldMiner (3.4 and 1.9 queries per session on average). Several frequent search terms overlap but some strong differences exist in the details. In radTF the term "normal" is frequent, whereas in GoldMiner it is not. This makes intuitive sense, as in the literature normal cases are rarely described whereas in clinical work the comparison with normal cases is often a first step.The general similarity in many points is likely due to the fact that users of the two systems are influenced by their daily behaviour in using standard web search engines and follow this behaviour in their professional search. This means that many results and insights gained from standard web search can likely be transferred to more specialized search systems. Still, specialized log files can be used to find out more on reformulations and detailed strategies of users to find the right content.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biomedica...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    7
    citations7
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biomedica...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Gurulingappa H.; Rajput A.M.; Roberts A.; Fluck J.; +2 Authors

    Graphical abstractDisplay Omitted Highlights? Benchmark corpus for adverse effect information extraction from free-text. ? Multiple annotations and thorough harmonization to ensure consistent quality. ? Machine learning-based sentence classification showed reliable outcome. A significant amount of information about drug-related safety issues such as adverse effects are published in medical case reports that can only be explored by human readers due to their unstructured nature. The work presented here aims at generating a systematically annotated corpus that can support the development and validation of methods for the automatic extraction of drug-related adverse effects from medical case reports. The documents are systematically double annotated in various rounds to ensure consistent annotations. The annotated documents are finally harmonized to generate representative consensus annotations. In order to demonstrate an example use case scenario, the corpus was employed to train and validate models for the classification of informative against the non-informative sentences. A Maximum Entropy classifier trained with simple features and evaluated by 10-fold cross-validation resulted in the F1 score of 0.70 indicating a potential useful application of the corpus.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biomedica...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Fraunhofer-ePrints
    Article . 2012
    Data sources: Fraunhofer-ePrints
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    238
    citations238
    popularityTop 0.1%
    influenceTop 1%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biomedica...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Fraunhofer-ePrints
      Article . 2012
      Data sources: Fraunhofer-ePrints
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Digital Humanities and Cultural Heritage. Are you interested to view more results? Visit OpenAIRE - Explore.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: De-Arteaga, Maria; Eggel, Ivan; Do, Bao; Rubin, Daniel; +2 Authors

    Display Omitted First study of log files of Stanford radiology search engine.Comparison between web search and hospital internal system search.Analysis of user behaviour, useful for improving search engines. Information search has changed the way we manage knowledge and the ubiquity of information access has made search a frequent activity, whether via Internet search engines or increasingly via mobile devices. Medical information search is in this respect no different and much research has been devoted to analyzing the way in which physicians aim to access information. Medical image search is a much smaller domain but has gained much attention as it has different characteristics than search for text documents. While web search log files have been analysed many times to better understand user behaviour, the log files of hospital internal systems for search in a PACS/RIS (Picture Archival and Communication System, Radiology Information System) have rarely been analysed. Such a comparison between a hospital PACS/RIS search and a web system for searching images of the biomedical literature is the goal of this paper. Objectives are to identify similarities and differences in search behaviour of the two systems, which could then be used to optimize existing systems and build new search engines.Log files of the ARRS GoldMiner medical image search engine (freely accessible on the Internet) containing 222,005 queries, and log files of Stanford's internal PACS/RIS search called radTF containing 18,068 queries were analysed. Each query was preprocessed and all query terms were mapped to the RadLex (Radiology Lexicon) terminology, a comprehensive lexicon of radiology terms created and maintained by the Radiological Society of North America, so the semantic content in the queries and the links between terms could be analysed, and synonyms for the same concept could be detected. RadLex was mainly created for the use in radiology reports, to aid structured reporting and the preparation of educational material (Lanlotz, 2006) 1. In standard medical vocabularies such as MeSH (Medical Subject Headings) and UMLS (Unified Medical Language System) specific terms of radiology are often underrepresented, therefore RadLex was considered to be the best option for this task.The results show a surprising similarity between the usage behaviour in the two systems, but several subtle differences can also be noted. The average number of terms per query is 2.21 for GoldMiner and 2.07 for radTF, the used axes of RadLex (anatomy, pathology, findings, ?) have almost the same distribution with clinical findings being the most frequent and the anatomical entity the second; also, combinations of RadLex axes are extremely similar between the two systems. Differences include a longer length of the sessions in radTF than in GoldMiner (3.4 and 1.9 queries per session on average). Several frequent search terms overlap but some strong differences exist in the details. In radTF the term "normal" is frequent, whereas in GoldMiner it is not. This makes intuitive sense, as in the literature normal cases are rarely described whereas in clinical work the comparison with normal cases is often a first step.The general similarity in many points is likely due to the fact that users of the two systems are influenced by their daily behaviour in using standard web search engines and follow this behaviour in their professional search. This means that many results and insights gained from standard web search can likely be transferred to more specialized search systems. Still, specialized log files can be used to find out more on reformulations and detailed strategies of users to find the right content.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biomedica...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    7
    citations7
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biomedica...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Gurulingappa H.; Rajput A.M.; Roberts A.; Fluck J.; +2 Authors

    Graphical abstractDisplay Omitted Highlights? Benchmark corpus for adverse effect information extraction from free-text. ? Multiple annotations and thorough harmonization to ensure consistent quality. ? Machine learning-based sentence classification showed reliable outcome. A significant amount of information about drug-related safety issues such as adverse effects are published in medical case reports that can only be explored by human readers due to their unstructured nature. The work presented here aims at generating a systematically annotated corpus that can support the development and validation of methods for the automatic extraction of drug-related adverse effects from medical case reports. The documents are systematically double annotated in various rounds to ensure consistent annotations. The annotated documents are finally harmonized to generate representative consensus annotations. In order to demonstrate an example use case scenario, the corpus was employed to train and validate models for the classification of informative against the non-informative sentences. A Maximum Entropy classifier trained with simple features and evaluated by 10-fold cross-validation resulted in the F1 score of 0.70 indicating a potential useful application of the corpus.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biomedica...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Fraunhofer-ePrints
    Article . 2012
    Data sources: Fraunhofer-ePrints
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    238
    citations238
    popularityTop 0.1%
    influenceTop 1%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biomedica...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Fraunhofer-ePrints
      Article . 2012
      Data sources: Fraunhofer-ePrints
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph