Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
Include:
The following results are related to Digital Humanities and Cultural Heritage. Are you interested to view more results? Visit OpenAIRE - Explore.
6 Research products, page 1 of 1

  • Digital Humanities and Cultural Heritage
  • Research data
  • Other research products
  • 2018-2022
  • FI
  • LUTPub

Relevance
arrow_drop_down
  • Open Access English
    Authors: 
    Suikkanen, Saku;
    Country: Finland

    In this work, the utilization of financial news alongside machine learning for predicting stock market movements is examined. The news are handled with various natural language processing methods for finding correlation between the derived attributes and stock market movements. The novelty of this work lies in the application of BNS and LDA methods as well as 2-word combinations alongside with LSTM neural network. The main point of the work is to examine the usefulness of the results achieved with the formerly mentioned methods and neural networks as well as comparing the results with market efficiency. In the research it was concluded that the models containing 2-word combinations derived with the BNS-method, produced differing results to those models, where the 2-word combinations were not used. However, the overall results followed random patterns and thus reliable results were not achieved. For achieving more reliable results, better approach could be predicting intraday stock market movements per Efficient Market hypothesis. Used datasets were possibly also too concise for the complexity of the problem. Tässä työssä tarkastellaan talousuutisten hyödyntämistä yhdessä koneoppimisen kanssa osakemarkkinoiden ennustamiseen. Uutisia käsitellään tietyillä luonnollisen kielen käsittelyn menetelmillä ja niistä pyritään löytämään korrelaatiota osakkeen liikkeiden kanssa. Työn uutuusarvona ovat BNS- ja LDA-menetelmien, sekä 2 sanan kombinaatioiden käyttö LSTM-neuroverkon yhteydessä. Työn pääasiallisena tavoitteena on tarkastella edellä mainittujen menetelmien ja neuroverkkojen yhdessä tuottamien tulosten hyödyllisyyttä ja niiden vertautumista markkinoiden tehokkuuteen. Tutkimuksessa selvisi, että mallit, jotka sisältävät BNS-menetelmällä johdettuja 2 sanan kombinaatioita, tuottavat poikkeavia tuloksia niihin malleihin verrattuna, joissa niitä ei käytetä. Tulokset kuitenkin noudattivat kaiken kaikkiaan satunnaista vaihtelua ja luotettavia tuloksia ei täten saatu. Tulosten parantamiseksi, parempi lähtökohta voisi olla päivän sisäisten vaihtelujen ennustaminen, markkinoiden tehokkuuden hypoteesin mukaisesti. Käytetyt tietoaineistot olivat myös mahdollisesti liian suppeat kompleksisuudeltaan vaativalle ongelmalle.

  • Other research product . 2019
    Open Access Finnish
    Authors: 
    Nieminen, Kirsi;
    Country: Finland

    Tämän kandidaatintyön tarkoituksena on perehtyä ydinaseiden kehitykseen ja ydinasevaltioihin. Ydinaseiden keksimiseen johtavat ensimmäiset fysiikan havainnot tehtiin 1900-luvun alussa. Tämä huipentui fission keksimiseen ennen toista maailmansotaa. Fission, sekä samoihin aikoihin löydetyn plutoniumin avulla ydinaseista tuli mahdollisia. Ydinaseisiin tarvittava korkearikasteinen uraani tuotetaan luonnonuraanista nykyään yleensä kaasusentrifugeilla ja plutonium tavallisilla ydinreaktoreilla. Ydinpommeja on kahta eri tyyppiä: fissio- ja vetypommit. Fissiopommeja on puolestaan kahta erilaista: tykkityyppinen ja imploosiotyyppinen ase. Tykkityyppisessä voidaan käyttää vain korkearikasteista uraania, mutta imploosiotyyppisessä voidaan käyttää myös plutoniumia. Vetypommissa hyödynnetään fission lisäksi myös fuusiota. Ydinasevaltioita on tällä hetkellä yhdeksän, joista neljä tuottaa edelleen fissiiliä materiaalia asekäyttöön. Yksi suurimmista ydinaseiden vähentymiseen johtavista tekijöistä oli kansainvälinen ydinsulkusopimus, jolla myös estetään uusien ydinasevaltioiden synty. Tällä hetkellä ydinaseita on vain kaksi kertaa käytetty sodassa ja onkin todennäköistä, että niiden olemassaolon takia ei ole ollut maailmanlaajuista sotaa. Koska ydinaseiden poisto vaatisi myös fissiilien materiaalien asetuoton lopettamista ja laajaa, sekä avointa kansainvälistä yhteistyötä, on todennäköistä, että sitä ei tapahdu lähivuosina tai edes -vuosikymmeninä.

  • Open Access Finnish
    Authors: 
    Tynkkynen, Teemu;
    Country: Finland

    Android-ekosysteemi on erilaisille älylaitteille kehitetty avoimeen lähdekoodiin pohjautuva ekosysteemi, joka on rakennettu Linux -järjestelmäytimen ympärille. Se julkaistiin vuonna 2007, jonka jälkeen sitä on päivitetty säännöllisesti, ja se on laajentunut älypuhelimista muun muassa älykelloihin ja Internet of Things -laitteisiin. Vuonna 2017 se oli myydyin käyttöliittymä sekä älypuhelimien että taulutietokoneiden käyttöjärjestelmänä. Tässä työssä sille luotiin neljä erilaista tulevaisuudenskenaariota käyttäen yhdistettyä skenaariomenetelmää. Ensimmäisessä skenaariossa Android jatkaa nykyisellään markkinajohtajana. Toisessa skenaariossa Google korvaa Android-ekosysteemin toisella ekosysteemillä. Kolmannessa skenaariossa Google lopettaa Android-ekosysteemin tukemisen. Neljännessä skenaariossa Android-ekosysteemi kasvaa yleiskäyttöjärjestelmäksi. The Android ecosystem is an open-source ecosystem developed for various smart devices built around the Linux-kernel. It was released in 2007, after which it has been updated regularly, and has expanded from smartphones to smartwatches and Internet of Things devices, for example. In 2017, it was best-selling operating system, both smartphones and tablet PCs. In this work, four different future scenarios were created using the combined scenario method. In the first scenario, Android continues to be the market leader. In the second scenario, Google replaces the Android ecosystem with another ecosystem. In the third scenario, Google stops supporting the Android ecosystem. In the fourth scenario, the Android ecosystem is growing into a universal operating system.

  • Open Access English
    Authors: 
    Korhonen, Satu;
    Publisher: Lappeenranta-Lahti University of Technology LUT
    Country: Finland

    This doctoral study was conducted as an inquiry of the international entrepreneur in order to balance off the domination of firm-level studies and limited discussion of the individual as the initial driver in the international entrepreneurship phenomenon (IE). Two research questions guide the study: ‘How do individuals make sense of themselves as becoming and being international entrepreneurs?’ and ‘How to theorise of individuals becoming and being international entrepreneurs through a narrative approach?’. With a processual view of the phenomenon, this study embraces IE as a journey and approaches histories and sense-making of individuals through narrative inquiry, paying attention to the different efforts by which entrepreneurs (and researchers) contextualize—and constitute—the personal-level IE journeys. The qualitative dataset consists of interviews and historical data. Data analysis builds on ‘hermeneutic reasoning’, suggesting that meanings and implications of journeys individuals have undertaken can be better grasped after they have unfolded in time. The findings in the four publications construct the contribution of this article-based dissertation. Publications I, II and III embrace narrative sense-making as meaning structure to past actions and lived events and illuminate how the international entrepreneurial ‘self’ as an actor and agent in retrospect manifests individuals as the ‘autobiographical authors’ in regard to developmental, transitional and generational experiences and their meanings in becoming and being an international entrepreneur. They provide evidence of how the founders’ sense-making and identity work feed into the behavioural orientations and ‘bounded and boundaryless’ career journeys of becoming and being international. Publications I, III and IV are novel attempts to address empirically the social historic process in which IE is embedded and its significance for the individual. When analysed against the (inter)generational backdrop of individuals’ actions and life-events, we may trace how international entrepreneurs are the protagonists of their own generations and leaving a legacy to the next.

  • Open Access English
    Authors: 
    Hajikhani, Arash;
    Publisher: Lappeenranta University of Technology
    Country: Finland

    In today’s knowledge-based economies, it is generally accepted that innovations are integral to the foundation of both regional and national economic development, as well as one of the main causes for social and technical transitions. In an effort to boost and benchmark innovation, metrics and indicators have been designed to measure its various stages of development in order to gain insight into what is driving results. In an effort to make such measurements, a systems approach had been adopted in order to capture the dynamic and complex nature of innovation. However, an ecosystem approach has recently begun to attract attention as a framework for studying innovation. The term “innovation ecosystem” is often employed to explain a large and diverse set of participants and resources essential to the success of any innovation. Literature on innovation ecosystems emphasizes both the importance of a network of linkages between multiple actors and taking a holistic approach to include all players in the ecosystem. This is done to provide synergy, which has an effect on the overall outcome. This dissertation advances the existing research on innovation ecosystems by incorporating the soft aspects of innovation and studying social network services (SNSs) as a complementarity within said ecosystem. SNS platforms (e.g. Twitter, Facebook) provide opportunities for mass communication and interaction, both of which mediate societal discussion. These platforms create a unique opportunity to inform a holistic approach to innovation. The purpose of this thesis is to discuss the importance of SNSs in innovation ecosystems and attempt to operationalize the valuable data within SNSs for a deeper understanding of innovation. First, this thesis introduces the measurement and evaluation practices used, with particular effort made to highlight how the term “ecosystem” first emerged and then became associated with studies on innovation. To that end, an in-depth analysis of the innovation ecosystem research and citation network was conducted to assess the growing body of literature on this topic. Secondly, this study utilizes SNS data at both the microand the meso-level, meaning the company-, community-, and national-level, and provides novel insights. To do so, advanced textual analyses were performed and machine learning models were employed to explore the content of SNSs. These analysis resulted in several interesting findings regarding the role of content producer and content quality in the overall interaction within SNSs. This attempt to leverage SNSs for data was then furthered to include the design of a metric used to evaluate and establish benchmarks for counties based on entrepreneurial-oriented activity. For a more exploratory approach, SNSs data was analyzed to ascertain whether patterns existed within discussion topics and in proximity over time. Finally, the theoretical impact and methodological contributions to the literature on innovation ecosystems is included to show a novel approach to the use of SNS data. The findings should help scientists and practitioners to engage with SNSs in a more confident manner when an ecosystem-oriented approach is taken to evaluate innovation.

  • Open Access English
    Authors: 
    Kostoska, Teodora;
    Country: Finland

    The increased amount of fake news has created a demand for different fake news detection methods. One way to detect fake news is with machine learning models. While there is a lot of research on different fake news detection models, there is not that much research done on the effects of sentiment information on the classification accuracy of the models. Sentiment information means the overall tone of each of the news articles in the dataset, whether it is positive, neutral, or negative. The goal of this thesis is to find out how sentiment information affects the performance of two of the most popular fake news detection machine learning models. These models are the Naïve Bayes and Support Vector Machine. The sentiment analysis was done with TextBlob and Vader, which are already tested and trained sentiment analysis tools available in Python. The results showed that sentiment information did not have any significant effect on the classification accuracy of the fake news detection models. In most of the cases the addition of sentiment information slightly decreased the accuracy of the models. Valeuutisten kasvanut määrä on aiheuttanut tarvetta löytää erilaisia menetelmiä valeuutisten havaitsemiseen. Yksi tapa havaita valeuutisia on koneoppimismenetelmien avulla. Vaikka erilaisia valeuutisten havaitsemiseen käytettyjä koneoppimismalleja on tutkittu paljon, ei ole vielä paljon tutkimusta siitä, miten tunnetieto vaikuttaa koneoppimismallien luokittelutarkkuuteen. Tunnetiedolla tarkoitetaan tietoaineiston kunkin uutisartikkelin yleistä sävyä, eli onko artikkeli positiivinen, neutraali vai negatiivinen. Tämän työn tavoitteena on selvittää, millainen vaikutus tunnetiedolla on kahteen suosituimpaan valeuutisten havaitsemiseen käytetyn koneoppimismallin suorituskykyyn. Nämä mallit ovat Naïve Bayes ja Support Vector Machine. Tunneanalyysi tehtiin käyttäen TextBlobia ja Vaderia, jotka ovat Pythonista löytyviä valmiiksi valmennettuja ja testattuja tunneanalyysityökaluja. Tulokset näyttivät, että tunnetiedolla ei ollut merkittävä vaikutus valeuutisia havaitsevien koneoppimismallien luokittelutarkkuuteen. Suurimmassa osassa tuloksista tunnetietojen lisääminen hiukan laski mallien tarkkuutta.