Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
Include:
The following results are related to Digital Humanities and Cultural Heritage. Are you interested to view more results? Visit OpenAIRE - Explore.
20 Research products, page 1 of 2

  • Digital Humanities and Cultural Heritage
  • Publications
  • Research data
  • Research software
  • Other research products
  • Open Access
  • Article
  • 050905 science studies
  • English
  • Scientometrics
  • OpenAIRE
  • Digital Humanities and Cultural Heritage

10
arrow_drop_down
Date (most recent)
arrow_drop_down
  • Open Access English
    Authors: 
    Adrian G. Barnett; Zoë A. Doubleday;
    Publisher: Springer International Publishing
    Country: Australia
    Project: ARC | ARC Future Fellowships - ... (FT190100244)

    “COVID” which stands for corona virus disease, has become the world’s most infamous acronym. Previous analysis of acronyms in health and medical journals found a growing use of acronyms over time in titles and abstracts, with “DNA” as the most common. Here we examine acronyms in the pandemic year of 2020 to show the dramatic rise of COVID-related research. “COVID” was over five times more frequently used than “DNA” in 2020, and in just one year it has become the sixth most popular acronym of all time, surpassing “AIDS”, “PCR” and “MRI”. Refereed/Peer-reviewed

  • Open Access English
    Authors: 
    Bakthavachalam Elango;
    Publisher: Springer International Publishing

    The aim of the present study is to identify retracted articles in the biomedical literature (co) authored by Indian authors and to examine the features of retracted articles. The PubMed database was searched to find the retracted articles in order to reach the goal. The search yielded 508 records and retrieved for the detailed analysis of: authorships and collaboration type, funding information, who retracts? journals and impact factors, and reasons for retraction. The results show that most of the biomedical articles retracted were published after 2010 and common reasons are plagiarism and fake data for retraction. More than half of the retracted articles were co-authored within the institutions and there is no repeat offender. 25% of retracted articles were published in the top 15 journals and 33% were published in the non-impact factor journals. Average time from publication to retraction is calculated to 2.86 years and retractions due to fake data takes longest period among the reasons. Majority of the funded research was retracted due to fake data whereas it is plagiarism for non-funded.

  • Open Access English
    Authors: 
    Zhiqi Wang; Ronald Rousseau;
    Publisher: Springer International Publishing
    Country: Belgium

    The Yule-Simpson paradox refers to the fact that outcomes of comparisons between groups are reversed when groups are combined. Using Essential Sciences Indicators, a part of InCites (Clarivate), data for countries, it is shown that although the Yule-Simpson phenomenon in citation analysis and research evaluation is not common, it isn't extremely rare either. The Yule-Simpson paradox is a phenomenon one should be aware of, otherwise one may encounter unforeseen surprises in scientometric studies. ispartof: SCIENTOMETRICS vol:126 issue:4 pages:3501-3511 ispartof: location:Switzerland status: published

  • Open Access English
    Authors: 
    Ozcan Saritas; Pavel Bakhtin; Ilya Kuzminov; Elena Khabirova;
    Publisher: Springer Science and Business Media LLC

    Identifying and monitoring business and technological trends are crucial for innovation and competitiveness of businesses. Exponential growth of data across the world is invaluable for identifying emerging and evolving trends. On the other hand, the vast amount of data leads to information overload and can no longer be adequately processed without the use of automated methods of extraction, processing, and generation of knowledge. There is a growing need for information systems that would monitor and analyse data from heterogeneous and unstructured sources in order to enable timely and evidence-based decision-making. Recent advancements in computing and big data provide enormous opportunities for gathering evidence on future developments and emerging opportunities. The present study demonstrates the use of text-mining and semantic analysis of large amount of documents for investigating in business trends in mobile commerce (m-commerce). Particularly with the on-going COVID-19 pandemic and resultant social isolation, m-commerce has become a large technology and business domain with ever growing market potentials. Thus, our study begins with a review of global challenges, opportunities and trends in the development of m-commerce in the world. Next, the study identifies critical technologies and instruments for the full utilization of the potentials in the sector by using the intelligent big data analytics system based on in-depth natural language processing utilizing text-mining, machine learning, science bibliometry and technology analysis. The results generated by the system can be used to produce a comprehensive and objective web of interconnected technologies, trends, drivers and barriers to give an overview of the whole landscape of m-commerce in one business intelligence (BI) data mart diagram.

  • Open Access English
    Authors: 
    Shima Moradi; Sajedeh Abdi;
    Publisher: Springer Science and Business Media LLC

    This commentary identifies and characterizes correction and erratum in COVID-19 publications with a scientometric approach by considering their rate of growth, reasons for correction, the time-span between publishing the original and corrected versions, as well as their citation status in four questions. It also suggestions to solve the current issues regarding indexing, retrieving, publishing, and research evaluation.

  • Open Access English
    Authors: 
    Benjamens, Stan; de Meijer, Vincent E.; Pol, Robert A.; Haring, Martijn P. D.;
    Country: Netherlands

    The COVID-19 pandemic has vast global consequences. Yet, effective mitigation strategies and economic and medical outfall differ extensively across the globe. It is currently unclear how well researchers from all continents are represented in the unsolicited and solicited publications. A literature review was performed in SCOPUS on COVID-19 oriented publications in the four most impactful medical journals. These included the British Medical Journal, Journal of the American Medical Association, the New England Journal of Medicine and The Lancet. We identified 809 eligible publications out of identified 924 records. The vast majority of publications on COVID-19, in the four can be considered European (47.7%) or North-American (37.3%) research. Chinese reports were relatively common (8.8%); however, reports from other Asian countries (3.2%) were minimal. Research from the African (1.0%) and South-American continents (0.6%) was rarely published in these journals. These observations are not surprising, as they reflect global academic publishing. However, involving all continents into COVID-19 research is important as COVID-19 management strategies and societal and economic consequences differ extensively across the globe. We see an important role for medical journals in encouraging global voices through solicited articles, to ensure a weighted research and humanitarian response. Electronic supplementary material The online version of this article (10.1007/s11192-020-03730-z) contains supplementary material, which is available to authorized users.

  • Open Access English
    Authors: 
    Shir Aviv-Reuven; Ariel Rosenfeld;
    Publisher: Springer International Publishing

    In recent months the COVID-19 (also known as SARS-CoV-2 and Coronavirus) pandemic has spread throughout the world. In parallel, extensive scholarly research regarding various aspects of the pandemic has been published. In this work, we analyse the changes in biomedical publishing patterns due to the pandemic. We study the changes in the volume of publications in both peer reviewed journals and preprint servers, average time to acceptance of papers submitted to biomedical journals, international (co-)authorship of these papers (expressed by diversity and volume), and the possible association between journal metrics and said changes. We study these possible changes using two approaches: a short-term analysis through which changes during the first six months of the outbreak are examined for both COVID-19 related papers and non-COVID-19 related papers; and a longitudinal approach through which changes are examined in comparison to the previous four years. Our results show that the pandemic has so far had a tremendous effect on all examined accounts of scholarly publications: A sharp increase in publication volume has been witnessed and it can be almost entirely attributed to the pandemic; a significantly faster mean time to acceptance for COVID-19 papers is apparent, and it has (partially) come at the expense of non-COVID-19 papers; and a significant reduction in international collaboration for COVID-19 papers has also been identified. As the pandemic continues to spread, these changes may cause a slow down in research in non-COVID-19 biomedical fields and bring about a lower rate of international collaboration. Comment: 26 pages, 9 figures, 11 tables

  • Open Access English
    Authors: 
    Jaime A. Teixeira da Silva; Panagiotis Tsigaris; Mohammadamin Erfanmanesh;
    Publisher: Springer International Publishing

    The SARS-CoV-2 virus, which causes Covid-19, induced a global pandemic for which an effective cure, either in the form of a drug or vaccine, has yet to be discovered. In the few brief months that the world has known Covid-19, there has been an unprecedented volume of papers published related to this disease, either in a bid to find solutions, or to discuss applied or related aspects. Data from Clarivate Analytics' Web of Science, and Elsevier's Scopus, which do not index preprints, were assessed. Our estimates indicate that 23,634 unique documents, 9960 of which were in common to both databases, were published between January 1 and June 30, 2020. Publications include research articles, letters, editorials, notes and reviews. As one example, amongst the 21,542 documents in Scopus, 47.6% were research articles, 22.4% were letters, and the rest were reviews, editorials, notes and other. Based on both databases, the top three countries, ranked by volume of published papers, are the USA, China, and Italy while BMJ, Journal of Medical Virology and The Lancet published the largest number of Covid-19-related papers. This paper provides one snapshot of how the publishing landscape has evolved in the first six months of 2020 in response to this pandemic and discusses the risks associated with the speed of publications.

  • Open Access English
    Authors: 
    Cristian Colliander; Per Ahlgren;
    Publisher: Umeå universitet, Sociologiska institutionen
    Country: Sweden

    In this paper, we compare two sophisticated publication-level approaches to ex-post citation normalization: an item-oriented approach and an approach falling under the general algorithmically constructed classification system approach. Using articles published in core journals in Web of Science (SCIE, SSCI & A&HCI) during 2009 (n=955,639), we first examine, using the measure Proportion explained variation (PEV), to what extent the publication-level approaches can explain and correct for variation in the citation distribution that stems from subject matter heterogeneity. We then, for the subset of articles from life science and biomedicine (n=456,045), gauge the fairness of the normalization approaches with respect to their ability to identify highly cited articles when subject area is factored out. This is done by utilizing information from publication-level MeSH classifications to create high quality subject matter baselines and by using the measure Deviations from expectations (DE). The results show that the item-oriented approach had the best performance regarding PEV. For DE, only the most fine-grained clustering solution could compete with the item-oriented approach. However, the item-oriented approach performed better when cited references were heavily weighted in the similarity calculations.

  • Open Access English
    Authors: 
    Jinseok Kim; Jinmo Kim; Jason Owen-Smith;
    Project: NSF | Collaborative Research: S... (1535370)

    To train algorithms for supervised author name disambiguation, many studies have relied on hand-labeled truth data that are very laborious to generate. This paper shows that labeled training data can be automatically generated using information features such as email address, coauthor names, and cited references that are available from publication records. For this purpose, high-precision rules for matching name instances on each feature are decided using an external-authority database. Then, selected name instances in target ambiguous data go through the process of pairwise matching based on the rules. Next, they are merged into clusters by a generic entity resolution algorithm. The clustering procedure is repeated over other features until further merging is impossible. Tested on 26,566 instances out of the population of 228K author name instances, this iterative clustering produced accurately labeled data with pairwise F1 = 0.99. The labeled data represented the population data in terms of name ethnicity and co-disambiguating name group size distributions. In addition, trained on the labeled data, machine learning algorithms disambiguated 24K names in test data with performance of pairwise F1 = 0.90 ~ 0.92. Several challenges are discussed for applying this method to resolving author name ambiguity in large-scale scholarly data. 25 pages

Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
Include:
The following results are related to Digital Humanities and Cultural Heritage. Are you interested to view more results? Visit OpenAIRE - Explore.
20 Research products, page 1 of 2
  • Open Access English
    Authors: 
    Adrian G. Barnett; Zoë A. Doubleday;
    Publisher: Springer International Publishing
    Country: Australia
    Project: ARC | ARC Future Fellowships - ... (FT190100244)

    “COVID” which stands for corona virus disease, has become the world’s most infamous acronym. Previous analysis of acronyms in health and medical journals found a growing use of acronyms over time in titles and abstracts, with “DNA” as the most common. Here we examine acronyms in the pandemic year of 2020 to show the dramatic rise of COVID-related research. “COVID” was over five times more frequently used than “DNA” in 2020, and in just one year it has become the sixth most popular acronym of all time, surpassing “AIDS”, “PCR” and “MRI”. Refereed/Peer-reviewed

  • Open Access English
    Authors: 
    Bakthavachalam Elango;
    Publisher: Springer International Publishing

    The aim of the present study is to identify retracted articles in the biomedical literature (co) authored by Indian authors and to examine the features of retracted articles. The PubMed database was searched to find the retracted articles in order to reach the goal. The search yielded 508 records and retrieved for the detailed analysis of: authorships and collaboration type, funding information, who retracts? journals and impact factors, and reasons for retraction. The results show that most of the biomedical articles retracted were published after 2010 and common reasons are plagiarism and fake data for retraction. More than half of the retracted articles were co-authored within the institutions and there is no repeat offender. 25% of retracted articles were published in the top 15 journals and 33% were published in the non-impact factor journals. Average time from publication to retraction is calculated to 2.86 years and retractions due to fake data takes longest period among the reasons. Majority of the funded research was retracted due to fake data whereas it is plagiarism for non-funded.

  • Open Access English
    Authors: 
    Zhiqi Wang; Ronald Rousseau;
    Publisher: Springer International Publishing
    Country: Belgium

    The Yule-Simpson paradox refers to the fact that outcomes of comparisons between groups are reversed when groups are combined. Using Essential Sciences Indicators, a part of InCites (Clarivate), data for countries, it is shown that although the Yule-Simpson phenomenon in citation analysis and research evaluation is not common, it isn't extremely rare either. The Yule-Simpson paradox is a phenomenon one should be aware of, otherwise one may encounter unforeseen surprises in scientometric studies. ispartof: SCIENTOMETRICS vol:126 issue:4 pages:3501-3511 ispartof: location:Switzerland status: published

  • Open Access English
    Authors: 
    Ozcan Saritas; Pavel Bakhtin; Ilya Kuzminov; Elena Khabirova;
    Publisher: Springer Science and Business Media LLC

    Identifying and monitoring business and technological trends are crucial for innovation and competitiveness of businesses. Exponential growth of data across the world is invaluable for identifying emerging and evolving trends. On the other hand, the vast amount of data leads to information overload and can no longer be adequately processed without the use of automated methods of extraction, processing, and generation of knowledge. There is a growing need for information systems that would monitor and analyse data from heterogeneous and unstructured sources in order to enable timely and evidence-based decision-making. Recent advancements in computing and big data provide enormous opportunities for gathering evidence on future developments and emerging opportunities. The present study demonstrates the use of text-mining and semantic analysis of large amount of documents for investigating in business trends in mobile commerce (m-commerce). Particularly with the on-going COVID-19 pandemic and resultant social isolation, m-commerce has become a large technology and business domain with ever growing market potentials. Thus, our study begins with a review of global challenges, opportunities and trends in the development of m-commerce in the world. Next, the study identifies critical technologies and instruments for the full utilization of the potentials in the sector by using the intelligent big data analytics system based on in-depth natural language processing utilizing text-mining, machine learning, science bibliometry and technology analysis. The results generated by the system can be used to produce a comprehensive and objective web of interconnected technologies, trends, drivers and barriers to give an overview of the whole landscape of m-commerce in one business intelligence (BI) data mart diagram.

  • Open Access English
    Authors: 
    Shima Moradi; Sajedeh Abdi;
    Publisher: Springer Science and Business Media LLC

    This commentary identifies and characterizes correction and erratum in COVID-19 publications with a scientometric approach by considering their rate of growth, reasons for correction, the time-span between publishing the original and corrected versions, as well as their citation status in four questions. It also suggestions to solve the current issues regarding indexing, retrieving, publishing, and research evaluation.

  • Open Access English
    Authors: 
    Benjamens, Stan; de Meijer, Vincent E.; Pol, Robert A.; Haring, Martijn P. D.;
    Country: Netherlands

    The COVID-19 pandemic has vast global consequences. Yet, effective mitigation strategies and economic and medical outfall differ extensively across the globe. It is currently unclear how well researchers from all continents are represented in the unsolicited and solicited publications. A literature review was performed in SCOPUS on COVID-19 oriented publications in the four most impactful medical journals. These included the British Medical Journal, Journal of the American Medical Association, the New England Journal of Medicine and The Lancet. We identified 809 eligible publications out of identified 924 records. The vast majority of publications on COVID-19, in the four can be considered European (47.7%) or North-American (37.3%) research. Chinese reports were relatively common (8.8%); however, reports from other Asian countries (3.2%) were minimal. Research from the African (1.0%) and South-American continents (0.6%) was rarely published in these journals. These observations are not surprising, as they reflect global academic publishing. However, involving all continents into COVID-19 research is important as COVID-19 management strategies and societal and economic consequences differ extensively across the globe. We see an important role for medical journals in encouraging global voices through solicited articles, to ensure a weighted research and humanitarian response. Electronic supplementary material The online version of this article (10.1007/s11192-020-03730-z) contains supplementary material, which is available to authorized users.

  • Open Access English
    Authors: 
    Shir Aviv-Reuven; Ariel Rosenfeld;
    Publisher: Springer International Publishing

    In recent months the COVID-19 (also known as SARS-CoV-2 and Coronavirus) pandemic has spread throughout the world. In parallel, extensive scholarly research regarding various aspects of the pandemic has been published. In this work, we analyse the changes in biomedical publishing patterns due to the pandemic. We study the changes in the volume of publications in both peer reviewed journals and preprint servers, average time to acceptance of papers submitted to biomedical journals, international (co-)authorship of these papers (expressed by diversity and volume), and the possible association between journal metrics and said changes. We study these possible changes using two approaches: a short-term analysis through which changes during the first six months of the outbreak are examined for both COVID-19 related papers and non-COVID-19 related papers; and a longitudinal approach through which changes are examined in comparison to the previous four years. Our results show that the pandemic has so far had a tremendous effect on all examined accounts of scholarly publications: A sharp increase in publication volume has been witnessed and it can be almost entirely attributed to the pandemic; a significantly faster mean time to acceptance for COVID-19 papers is apparent, and it has (partially) come at the expense of non-COVID-19 papers; and a significant reduction in international collaboration for COVID-19 papers has also been identified. As the pandemic continues to spread, these changes may cause a slow down in research in non-COVID-19 biomedical fields and bring about a lower rate of international collaboration. Comment: 26 pages, 9 figures, 11 tables

  • Open Access English
    Authors: 
    Jaime A. Teixeira da Silva; Panagiotis Tsigaris; Mohammadamin Erfanmanesh;
    Publisher: Springer International Publishing

    The SARS-CoV-2 virus, which causes Covid-19, induced a global pandemic for which an effective cure, either in the form of a drug or vaccine, has yet to be discovered. In the few brief months that the world has known Covid-19, there has been an unprecedented volume of papers published related to this disease, either in a bid to find solutions, or to discuss applied or related aspects. Data from Clarivate Analytics' Web of Science, and Elsevier's Scopus, which do not index preprints, were assessed. Our estimates indicate that 23,634 unique documents, 9960 of which were in common to both databases, were published between January 1 and June 30, 2020. Publications include research articles, letters, editorials, notes and reviews. As one example, amongst the 21,542 documents in Scopus, 47.6% were research articles, 22.4% were letters, and the rest were reviews, editorials, notes and other. Based on both databases, the top three countries, ranked by volume of published papers, are the USA, China, and Italy while BMJ, Journal of Medical Virology and The Lancet published the largest number of Covid-19-related papers. This paper provides one snapshot of how the publishing landscape has evolved in the first six months of 2020 in response to this pandemic and discusses the risks associated with the speed of publications.

  • Open Access English
    Authors: 
    Cristian Colliander; Per Ahlgren;
    Publisher: Umeå universitet, Sociologiska institutionen
    Country: Sweden

    In this paper, we compare two sophisticated publication-level approaches to ex-post citation normalization: an item-oriented approach and an approach falling under the general algorithmically constructed classification system approach. Using articles published in core journals in Web of Science (SCIE, SSCI & A&HCI) during 2009 (n=955,639), we first examine, using the measure Proportion explained variation (PEV), to what extent the publication-level approaches can explain and correct for variation in the citation distribution that stems from subject matter heterogeneity. We then, for the subset of articles from life science and biomedicine (n=456,045), gauge the fairness of the normalization approaches with respect to their ability to identify highly cited articles when subject area is factored out. This is done by utilizing information from publication-level MeSH classifications to create high quality subject matter baselines and by using the measure Deviations from expectations (DE). The results show that the item-oriented approach had the best performance regarding PEV. For DE, only the most fine-grained clustering solution could compete with the item-oriented approach. However, the item-oriented approach performed better when cited references were heavily weighted in the similarity calculations.

  • Open Access English
    Authors: 
    Jinseok Kim; Jinmo Kim; Jason Owen-Smith;
    Project: NSF | Collaborative Research: S... (1535370)

    To train algorithms for supervised author name disambiguation, many studies have relied on hand-labeled truth data that are very laborious to generate. This paper shows that labeled training data can be automatically generated using information features such as email address, coauthor names, and cited references that are available from publication records. For this purpose, high-precision rules for matching name instances on each feature are decided using an external-authority database. Then, selected name instances in target ambiguous data go through the process of pairwise matching based on the rules. Next, they are merged into clusters by a generic entity resolution algorithm. The clustering procedure is repeated over other features until further merging is impossible. Tested on 26,566 instances out of the population of 228K author name instances, this iterative clustering produced accurately labeled data with pairwise F1 = 0.99. The labeled data represented the population data in terms of name ethnicity and co-disambiguating name group size distributions. In addition, trained on the labeled data, machine learning algorithms disambiguated 24K names in test data with performance of pairwise F1 = 0.90 ~ 0.92. Several challenges are discussed for applying this method to resolving author name ambiguity in large-scale scholarly data. 25 pages