Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
Include:
The following results are related to Digital Humanities and Cultural Heritage. Are you interested to view more results? Visit OpenAIRE - Explore.
139 Research products, page 1 of 14

  • Digital Humanities and Cultural Heritage
  • Publications
  • Research data
  • Research software
  • Other research products
  • Article
  • 050105 experimental psychology
  • European Commission
  • EC|H2020
  • EU
  • DE
  • IT
  • Digital Humanities and Cultural Heritage
  • Social Science and Humanities

10
arrow_drop_down
Date (most recent)
arrow_drop_down
  • Open Access
    Authors: 
    Steinert-Threlkeld, Shane;
    Publisher: Open Science Framework
    Project: EC | CoSaQ (716230)

    While the languages of the world vary greatly, they exhibit systematic patterns, as well. Semantic universals are restrictions on the variation in meaning exhibit cross-linguistically (e.g., that, in all languages, expressions of a certain type can only denote meanings with a certain special property). This paper pursues an efficient communication analysis to explain the presence of semantic universals in a domain of function words: quantifiers. Two experiments measure how well languages do in optimally trading off between competing pressures of simplicity and informativeness. First, we show that artificial languages which more closely resemble natural languages are more optimal. Then, we introduce information-theoretic measures of degrees of semantic universals and show that these are not correlated with optimality in a random sample of artificial languages. These results suggest both that efficient communication shapes semantic typology in both content and function word domains, as well as that semantic universals may not stand in need of independent explanation.

  • Open Access English
    Authors: 
    Yoolim Kim; Sandra Kotzor; Aditi Lahiri;
    Country: United Kingdom
    Project: EC | MOR-PHON (695481)

    Korean can be transcribed in two different scripts, one alphabetic (Hangul) and one logographic (Hanja). How does the mental lexicon represent the contributions of multiple scripts? Hangul’s highly transparent one-to-one relationship between spellings and sounds creates homophones in spoken Korean that are also homographs in Hangul, which can only be disambiguated through Hanja. We thus tested whether native speakers encoded the semantic contributions of the different Hanja characters sharing the same homographic form in Hangul in their mental representation of Sino-Korean. Is processing modulated by the number of available meanings, that is, the size of the semantic cohort? In two cross-modal lexical decision tasks with semantic priming,participants were presented with auditory primes that were either syllables (Experiment 1) or full Sino-Korean words (Experiment 2), followed by visual Sino-Korean full word targets. In Experiment 1, reaction times were not significantly modulated by the size of the semantic cohort. However, in Experiment 2, we observed significantly faster reaction times for targets preceded by primes with larger semantic cohorts. We discuss these findings in relation to the structure of the mental lexicon for bi-scriptal languages and the representation of semantic cohorts across different scripts. 1. Introduction 2. Hanja and Hangul during processing 3. Experiment 1: Cross-modal fragment priming 3.1. Method 3.1.1. Participants 3.1.2. Materials and design 3.1.3. Procedure 3.2. Results 3.3. Discussion 4. Experiment 2: Cross-modal full word priming 4.1. Method 4.1.1. Participants 4.1.2. Materials and design 4.1.3. Procedure 4.2. Results 4.3. Discussion 5. General discussion 6. Conclusions

  • Open Access
    Authors: 
    David Natvig;
    Publisher: MDPI AG
    Country: Norway
    Project: EC | AmNorSSC (838164)

    Although heritage language phonology is often argued to be fairly stable, heritage language speakers often sound noticeably different from both monolinguals and second-language learners. In order to model these types of asymmetries, I propose a theoretical framework—an integrated multilingual sound system—based on modular representations of an integrated set of phonological contrasts. An examination of general findings in laryngeal (voicing, aspiration, etc.) phonetics and phonology for heritage languages shows that procedures for pronouncing phonemes are variable and plastic, even if abstract may representations remain stable. Furthermore, an integrated multilingual sound system predicts that use of one language may require a subset of the available representations, which illuminates the mechanisms that underlie phonological transfer, attrition, and acquisition.

  • Authors: 
    Thiago Henrique Mota;
    Publisher: Informa UK Limited
    Project: EC | SLAFNET (734596)

    This paper explains the Islamic expansion in Greater Senegambia in the sixteenth and seventeenth centuries from an Atlantic perspective. It discusses the spread of the Islamic faith in West Africa ...

  • Publication . Preprint . Article . 2021
    Open Access
    Authors: 
    Sieghard Beller; Andrea Bender; Stephen Chrisomalis; Fiona M. Jordan; Karenleigh A. Overmann; Geoffrey B. Saxe; Dirk Schlimm;
    Publisher: Leibniz Institute for Psychology (ZPID)
    Countries: United Kingdom, Norway
    Project: EC | VARIKIN (639291)

    In their recent paper on “Challenges in mathematical cognition”, Alcock and colleagues (Alcock et al. [2016]. Challenges in mathematical cognition: A collaboratively-derived research agenda. Journal of Numerical Cognition, 2, 20-41) defined a research agenda through 26 specific research questions. An important dimension of mathematical cognition almost completely absent from their discussion is the cultural constitution of mathematical cognition. Spanning work from a broad range of disciplines – including anthropology, archaeology, cognitive science, history of science, linguistics, philosophy, and psychology – we argue that for any research agenda on mathematical cognition the cultural dimension is indispensable, and we propose a set of exemplary research questions related to it. publishedVersion

  • Open Access
    Authors: 
    Adam N. Sanborn; Katherine Heller; Joseph L. Austerweil; Nick Chater;
    Publisher: American Psychological Association (APA)
    Country: United Kingdom
    Project: UKRI | Big Data, Innovations and... (EP/K039830/1), EC | SAMPLING (817492), EC | RATIONALITY (295917)

    Much categorization behavior can be explained by family resemblance: New items are classified by comparison with previously learned exemplars. However, categorization behavior also shows a variety of dimensional biases, where the underlying space has so-called "separable" dimensions: Ease of learning categories depends on how the stimuli align with the separable dimensions of the space. For example, if a set of objects of various sizes and colors can be accurately categorized using a single separable dimension (e.g., size), then category learning will be fast, while if the category is determined by both dimensions, learning will be slow. To capture these dimensional biases, almost all models of categorization supplement family resemblance with either rule-based systems or selective attention to separable dimensions. But these models do not explain how separable dimensions initially arise; they are presumed to be unexplained psychological primitives. We develop, instead, a pure family resemblance version of the Rational Model of Categorization (RMC), which we term the Rational Exclusively Family RESemblance Hierarchy (REFRESH), which does not presuppose any separable dimensions in the space of stimuli. REFRESH infers how the stimuli are clustered and uses a hierarchical prior to learn expectations about the variability of clusters across categories. We first demonstrate the dimensional alignment of natural-category features and then show how through a lifetime of categorization experience REFRESH will learn prior expectations that clusters of stimuli will align with separable dimensions. REFRESH captures the key dimensional biases and also explains their stimulus-dependence and how they are learned and develop. (PsycInfo Database Record (c) 2021 APA, all rights reserved).

  • Open Access English
    Authors: 
    Tristan Carsault; Jérôme Nika; Philippe Esling; Gérard Assayag;
    Publisher: HAL CCSD
    Country: France
    Project: EC | REACH (883313), ANR | MERCI (ANR-19-CE33-0010)

    International audience; Recently, the field of musical co-creativity has gained some momentum. In this context, our goal is twofold: to develop an intelligent listening and predictive module of chord sequences, and to propose an adapted evaluation of the associated Music Information Retrieval (MIR) tasks that are the real-time extraction of musical chord labels from a live audio stream and the prediction of a possible continuation of the extracted symbolic sequence. Indeed, this application case invites us to raise questions about the evaluation processes and methodology that are currently applied to chord-based MIR models. In this paper, we focus on musical chords since these mid-level features are frequently used to describe harmonic progressions in Western music. In the case of chords, there exists some strong inherent hierarchical and functional relationships. However, most of the research in the field of MIR focuses mainly on the performance of chord-based statistical models, without considering music-based evaluation or learning. Indeed, usual evaluations are based on a binary qualification of the classification outputs (right chord predicted versus wrong chord predicted). Therefore, we present a specifically-tailored chord analyser to measure the performances of chord-based models in terms of functional qualification of the classification outputs (by taking into account the harmonic function of the chords). Then, in order to introduce musical knowledge into the learning process for the automatic chord extraction task, we propose a specific musical distance for comparing predicted and labeled chords. Finally, we conduct investigations into the impact of including high-level metadata in chord sequence prediction learning (such as information on key or downbeat position). We show that a model can obtain better performances in terms of accuracy or perplexity, but output biased results. At the same time, a model with a lower accuracy score can output errors with more musical meaning. Therefore, performing a goal-oriented evaluation allows a better understanding of the results and a more adapted design of MIR models.

  • Open Access
    Authors: 
    Sara Pacchiarotti; Koen Bostoen;
    Publisher: Fеdегаl State Institution of Science Institute of Linguistics of the Russian Academy of Sсiеnсеs
    Country: Belgium
    Project: EC | BantuFirst (724275)

    In this paper we offer a first systematic account of the noun class system of Ngwi, a West-Coastal Bantu language spoken in the Democratic Republic of the Congo. First, we describe the synchronic system of noun class prefixes and the agreement patterns they trigger on constituents of the noun phrase and the verb. Second, we provide a diachronic analysis of the innovations the synchronic Ngwi noun class system underwent with respect to the noun class system reconstructed for the most recent common ancestor of all Narrow Bantu languages. Finally, we compare the morphological innovations found in the Ngwi noun class system with those identified in the noun class systems of other West-Coastal Bantu varieties and assess whether some of these could be diagnostic for internal classification within this western Bantu branch.

  • Publication . Article . 2021 . Embargo End Date: 11 Oct 2021
    Open Access
    Authors: 
    Olga Majewska; Diana McCarthy; Jasper J. F. van den Bosch; Nikolaus Kriegeskorte; Ivan Vulić; Anna Korhonen;
    Publisher: Apollo - University of Cambridge Repository
    Country: United Kingdom
    Project: EC | LEXICAL (648909)

    Abstract Research into representation learning models of lexical semantics usually utilizes some form of intrinsic evaluation to ensure that the learned representations reflect human semantic judgments. Lexical semantic similarity estimation is a widely used evaluation method, but efforts have typically focused on pairwise judgments of words in isolation, or are limited to specific contexts and lexical stimuli. There are limitations with these approaches that either do not provide any context for judgments, and thereby ignore ambiguity, or provide very specific sentential contexts that cannot then be used to generate a larger lexical resource. Furthermore, similarity between more than two items is not considered. We provide a full description and analysis of our recently proposed methodology for large-scale data set construction that produces a semantic classification of a large sample of verbs in the first phase, as well as multi-way similarity judgments made within the resultant semantic classes in the second phase. The methodology uses a spatial multi-arrangement approach proposed in the field of cognitive neuroscience for capturing multi-way similarity judgments of visual stimuli. We have adapted this method to handle polysemous linguistic stimuli and much larger samples than previous work. We specifically target verbs, but the method can equally be applied to other parts of speech. We perform cluster analysis on the data from the first phase and demonstrate how this might be useful in the construction of a comprehensive verb resource. We also analyze the semantic information captured by the second phase and discuss the potential of the spatially induced similarity judgments to better reflect human notions of word similarity. We demonstrate how the resultant data set can be used for fine-grained analyses and evaluation of representation learning models on the intrinsic tasks of semantic clustering and semantic similarity. In particular, we find that stronger static word embedding methods still outperform lexical representations emerging from more recent pre-training methods, both on word-level similarity and clustering. Moreover, thanks to the data set’s vast coverage, we are able to compare the benefits of specializing vector representations for a particular type of external knowledge by evaluating FrameNet- and VerbNet-retrofitted models on specific semantic domains such as “Heat” or “Motion.”

  • Open Access
    Authors: 
    Axel Constant; Alexander Daniel Dunsmoir Tschantz; Alexander Daniel Dunsmoir Tschantz; Beren Millidge; Beren Millidge; Felipe Criado-Boado; Luis M Martinez; Johannes Müeller; Andy Clark; Andy Clark; +1 more
    Publisher: Frontiers Media SA
    Countries: United Kingdom, Spain
    Project: EC | XSPECT (692739), SSHRC

    This paper presents an active inference based simulation study of visual foraging. The goal of the simulation is to show the effect of the acquisition of culturally patterned attention styles on cognitive task performance, under active inference. We show how cultural artefacts like antique vase decorations drive cognitive functions such as perception, action and learning, as well as task performance in a simple visual discrimination task. We thus describe a new active inference based research pipeline that future work may employ to inquire on deep guiding principles determining the manner in which material culture drives human thought, by building and rebuilding our patterns of attention. Researchers on this article were supported by an Australian Laureate Fellowship project A Philosophy of Medicine for the 21st Century (Ref: FL170100160) and by a Social Sciences and Humanities Research Council doctoral fellowship (Ref: 752-2019-0065) (AC), by a PhD studentship from the Sackler Foundation and the School of Engineering and Informatics at the University of Sussex (AT); by an EPSRC PhD Studentship (BM), by a GAIN-Xunta de Galiza Groups of Excellence 2020 (FC-B), and by Horizon 2020 European Union ERC Advanced Grant XSPECT - DLV-692739 (AC). AT is grateful to the Mortimer and Theresa Sackler Foundation, which supports the Sackler Centre for Consciousness Science.

Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
Include:
The following results are related to Digital Humanities and Cultural Heritage. Are you interested to view more results? Visit OpenAIRE - Explore.
139 Research products, page 1 of 14
  • Open Access
    Authors: 
    Steinert-Threlkeld, Shane;
    Publisher: Open Science Framework
    Project: EC | CoSaQ (716230)

    While the languages of the world vary greatly, they exhibit systematic patterns, as well. Semantic universals are restrictions on the variation in meaning exhibit cross-linguistically (e.g., that, in all languages, expressions of a certain type can only denote meanings with a certain special property). This paper pursues an efficient communication analysis to explain the presence of semantic universals in a domain of function words: quantifiers. Two experiments measure how well languages do in optimally trading off between competing pressures of simplicity and informativeness. First, we show that artificial languages which more closely resemble natural languages are more optimal. Then, we introduce information-theoretic measures of degrees of semantic universals and show that these are not correlated with optimality in a random sample of artificial languages. These results suggest both that efficient communication shapes semantic typology in both content and function word domains, as well as that semantic universals may not stand in need of independent explanation.

  • Open Access English
    Authors: 
    Yoolim Kim; Sandra Kotzor; Aditi Lahiri;
    Country: United Kingdom
    Project: EC | MOR-PHON (695481)

    Korean can be transcribed in two different scripts, one alphabetic (Hangul) and one logographic (Hanja). How does the mental lexicon represent the contributions of multiple scripts? Hangul’s highly transparent one-to-one relationship between spellings and sounds creates homophones in spoken Korean that are also homographs in Hangul, which can only be disambiguated through Hanja. We thus tested whether native speakers encoded the semantic contributions of the different Hanja characters sharing the same homographic form in Hangul in their mental representation of Sino-Korean. Is processing modulated by the number of available meanings, that is, the size of the semantic cohort? In two cross-modal lexical decision tasks with semantic priming,participants were presented with auditory primes that were either syllables (Experiment 1) or full Sino-Korean words (Experiment 2), followed by visual Sino-Korean full word targets. In Experiment 1, reaction times were not significantly modulated by the size of the semantic cohort. However, in Experiment 2, we observed significantly faster reaction times for targets preceded by primes with larger semantic cohorts. We discuss these findings in relation to the structure of the mental lexicon for bi-scriptal languages and the representation of semantic cohorts across different scripts. 1. Introduction 2. Hanja and Hangul during processing 3. Experiment 1: Cross-modal fragment priming 3.1. Method 3.1.1. Participants 3.1.2. Materials and design 3.1.3. Procedure 3.2. Results 3.3. Discussion 4. Experiment 2: Cross-modal full word priming 4.1. Method 4.1.1. Participants 4.1.2. Materials and design 4.1.3. Procedure 4.2. Results 4.3. Discussion 5. General discussion 6. Conclusions

  • Open Access
    Authors: 
    David Natvig;
    Publisher: MDPI AG
    Country: Norway
    Project: EC | AmNorSSC (838164)

    Although heritage language phonology is often argued to be fairly stable, heritage language speakers often sound noticeably different from both monolinguals and second-language learners. In order to model these types of asymmetries, I propose a theoretical framework—an integrated multilingual sound system—based on modular representations of an integrated set of phonological contrasts. An examination of general findings in laryngeal (voicing, aspiration, etc.) phonetics and phonology for heritage languages shows that procedures for pronouncing phonemes are variable and plastic, even if abstract may representations remain stable. Furthermore, an integrated multilingual sound system predicts that use of one language may require a subset of the available representations, which illuminates the mechanisms that underlie phonological transfer, attrition, and acquisition.

  • Authors: 
    Thiago Henrique Mota;
    Publisher: Informa UK Limited
    Project: EC | SLAFNET (734596)

    This paper explains the Islamic expansion in Greater Senegambia in the sixteenth and seventeenth centuries from an Atlantic perspective. It discusses the spread of the Islamic faith in West Africa ...

  • Publication . Preprint . Article . 2021
    Open Access
    Authors: 
    Sieghard Beller; Andrea Bender; Stephen Chrisomalis; Fiona M. Jordan; Karenleigh A. Overmann; Geoffrey B. Saxe; Dirk Schlimm;
    Publisher: Leibniz Institute for Psychology (ZPID)
    Countries: United Kingdom, Norway
    Project: EC | VARIKIN (639291)

    In their recent paper on “Challenges in mathematical cognition”, Alcock and colleagues (Alcock et al. [2016]. Challenges in mathematical cognition: A collaboratively-derived research agenda. Journal of Numerical Cognition, 2, 20-41) defined a research agenda through 26 specific research questions. An important dimension of mathematical cognition almost completely absent from their discussion is the cultural constitution of mathematical cognition. Spanning work from a broad range of disciplines – including anthropology, archaeology, cognitive science, history of science, linguistics, philosophy, and psychology – we argue that for any research agenda on mathematical cognition the cultural dimension is indispensable, and we propose a set of exemplary research questions related to it. publishedVersion

  • Open Access
    Authors: 
    Adam N. Sanborn; Katherine Heller; Joseph L. Austerweil; Nick Chater;
    Publisher: American Psychological Association (APA)
    Country: United Kingdom
    Project: UKRI | Big Data, Innovations and... (EP/K039830/1), EC | SAMPLING (817492), EC | RATIONALITY (295917)

    Much categorization behavior can be explained by family resemblance: New items are classified by comparison with previously learned exemplars. However, categorization behavior also shows a variety of dimensional biases, where the underlying space has so-called "separable" dimensions: Ease of learning categories depends on how the stimuli align with the separable dimensions of the space. For example, if a set of objects of various sizes and colors can be accurately categorized using a single separable dimension (e.g., size), then category learning will be fast, while if the category is determined by both dimensions, learning will be slow. To capture these dimensional biases, almost all models of categorization supplement family resemblance with either rule-based systems or selective attention to separable dimensions. But these models do not explain how separable dimensions initially arise; they are presumed to be unexplained psychological primitives. We develop, instead, a pure family resemblance version of the Rational Model of Categorization (RMC), which we term the Rational Exclusively Family RESemblance Hierarchy (REFRESH), which does not presuppose any separable dimensions in the space of stimuli. REFRESH infers how the stimuli are clustered and uses a hierarchical prior to learn expectations about the variability of clusters across categories. We first demonstrate the dimensional alignment of natural-category features and then show how through a lifetime of categorization experience REFRESH will learn prior expectations that clusters of stimuli will align with separable dimensions. REFRESH captures the key dimensional biases and also explains their stimulus-dependence and how they are learned and develop. (PsycInfo Database Record (c) 2021 APA, all rights reserved).

  • Open Access English
    Authors: 
    Tristan Carsault; Jérôme Nika; Philippe Esling; Gérard Assayag;
    Publisher: HAL CCSD
    Country: France
    Project: EC | REACH (883313), ANR | MERCI (ANR-19-CE33-0010)

    International audience; Recently, the field of musical co-creativity has gained some momentum. In this context, our goal is twofold: to develop an intelligent listening and predictive module of chord sequences, and to propose an adapted evaluation of the associated Music Information Retrieval (MIR) tasks that are the real-time extraction of musical chord labels from a live audio stream and the prediction of a possible continuation of the extracted symbolic sequence. Indeed, this application case invites us to raise questions about the evaluation processes and methodology that are currently applied to chord-based MIR models. In this paper, we focus on musical chords since these mid-level features are frequently used to describe harmonic progressions in Western music. In the case of chords, there exists some strong inherent hierarchical and functional relationships. However, most of the research in the field of MIR focuses mainly on the performance of chord-based statistical models, without considering music-based evaluation or learning. Indeed, usual evaluations are based on a binary qualification of the classification outputs (right chord predicted versus wrong chord predicted). Therefore, we present a specifically-tailored chord analyser to measure the performances of chord-based models in terms of functional qualification of the classification outputs (by taking into account the harmonic function of the chords). Then, in order to introduce musical knowledge into the learning process for the automatic chord extraction task, we propose a specific musical distance for comparing predicted and labeled chords. Finally, we conduct investigations into the impact of including high-level metadata in chord sequence prediction learning (such as information on key or downbeat position). We show that a model can obtain better performances in terms of accuracy or perplexity, but output biased results. At the same time, a model with a lower accuracy score can output errors with more musical meaning. Therefore, performing a goal-oriented evaluation allows a better understanding of the results and a more adapted design of MIR models.

  • Open Access
    Authors: 
    Sara Pacchiarotti; Koen Bostoen;
    Publisher: Fеdегаl State Institution of Science Institute of Linguistics of the Russian Academy of Sсiеnсеs
    Country: Belgium
    Project: EC | BantuFirst (724275)

    In this paper we offer a first systematic account of the noun class system of Ngwi, a West-Coastal Bantu language spoken in the Democratic Republic of the Congo. First, we describe the synchronic system of noun class prefixes and the agreement patterns they trigger on constituents of the noun phrase and the verb. Second, we provide a diachronic analysis of the innovations the synchronic Ngwi noun class system underwent with respect to the noun class system reconstructed for the most recent common ancestor of all Narrow Bantu languages. Finally, we compare the morphological innovations found in the Ngwi noun class system with those identified in the noun class systems of other West-Coastal Bantu varieties and assess whether some of these could be diagnostic for internal classification within this western Bantu branch.

  • Publication . Article . 2021 . Embargo End Date: 11 Oct 2021
    Open Access
    Authors: 
    Olga Majewska; Diana McCarthy; Jasper J. F. van den Bosch; Nikolaus Kriegeskorte; Ivan Vulić; Anna Korhonen;
    Publisher: Apollo - University of Cambridge Repository
    Country: United Kingdom
    Project: EC | LEXICAL (648909)

    Abstract Research into representation learning models of lexical semantics usually utilizes some form of intrinsic evaluation to ensure that the learned representations reflect human semantic judgments. Lexical semantic similarity estimation is a widely used evaluation method, but efforts have typically focused on pairwise judgments of words in isolation, or are limited to specific contexts and lexical stimuli. There are limitations with these approaches that either do not provide any context for judgments, and thereby ignore ambiguity, or provide very specific sentential contexts that cannot then be used to generate a larger lexical resource. Furthermore, similarity between more than two items is not considered. We provide a full description and analysis of our recently proposed methodology for large-scale data set construction that produces a semantic classification of a large sample of verbs in the first phase, as well as multi-way similarity judgments made within the resultant semantic classes in the second phase. The methodology uses a spatial multi-arrangement approach proposed in the field of cognitive neuroscience for capturing multi-way similarity judgments of visual stimuli. We have adapted this method to handle polysemous linguistic stimuli and much larger samples than previous work. We specifically target verbs, but the method can equally be applied to other parts of speech. We perform cluster analysis on the data from the first phase and demonstrate how this might be useful in the construction of a comprehensive verb resource. We also analyze the semantic information captured by the second phase and discuss the potential of the spatially induced similarity judgments to better reflect human notions of word similarity. We demonstrate how the resultant data set can be used for fine-grained analyses and evaluation of representation learning models on the intrinsic tasks of semantic clustering and semantic similarity. In particular, we find that stronger static word embedding methods still outperform lexical representations emerging from more recent pre-training methods, both on word-level similarity and clustering. Moreover, thanks to the data set’s vast coverage, we are able to compare the benefits of specializing vector representations for a particular type of external knowledge by evaluating FrameNet- and VerbNet-retrofitted models on specific semantic domains such as “Heat” or “Motion.”

  • Open Access
    Authors: 
    Axel Constant; Alexander Daniel Dunsmoir Tschantz; Alexander Daniel Dunsmoir Tschantz; Beren Millidge; Beren Millidge; Felipe Criado-Boado; Luis M Martinez; Johannes Müeller; Andy Clark; Andy Clark; +1 more
    Publisher: Frontiers Media SA
    Countries: United Kingdom, Spain
    Project: EC | XSPECT (692739), SSHRC

    This paper presents an active inference based simulation study of visual foraging. The goal of the simulation is to show the effect of the acquisition of culturally patterned attention styles on cognitive task performance, under active inference. We show how cultural artefacts like antique vase decorations drive cognitive functions such as perception, action and learning, as well as task performance in a simple visual discrimination task. We thus describe a new active inference based research pipeline that future work may employ to inquire on deep guiding principles determining the manner in which material culture drives human thought, by building and rebuilding our patterns of attention. Researchers on this article were supported by an Australian Laureate Fellowship project A Philosophy of Medicine for the 21st Century (Ref: FL170100160) and by a Social Sciences and Humanities Research Council doctoral fellowship (Ref: 752-2019-0065) (AC), by a PhD studentship from the Sackler Foundation and the School of Engineering and Informatics at the University of Sussex (AT); by an EPSRC PhD Studentship (BM), by a GAIN-Xunta de Galiza Groups of Excellence 2020 (FC-B), and by Horizon 2020 European Union ERC Advanced Grant XSPECT - DLV-692739 (AC). AT is grateful to the Mortimer and Theresa Sackler Foundation, which supports the Sackler Centre for Consciousness Science.