- home
- Advanced Search
Advanced search in Research outcomes
Filters
Clear AllFilters
Clear AllLoading
- 1
- 2
- research data . 2020Open AccessAuthors:Quanjer, B.; Kok, J.;Publisher: DANS EASY
This release contains data of recruits of the Comportementboeken of the Maritime Institute Amsterdam (Kweekschool voor de Zeevaart) for the period 1792 – 1943. It consists of a main body, that derives from the personal pages that were kept for every student in the insti...
- research data . 2020 . Embargo End Date: 02 Jul 2020Open AccessAuthors:Galen, C.W. van; Hermsen, T.B.; Heuvel, H. van den;Publisher: Data Archiving and Networked Services (DANS)
This data collection comprises a set of test files developed in the CoDoSiS project of the CLARIAH program. The project ‘Combining Data on slavery in Surinam’ (CoDoSiS) aimed to develop a strategy to convert existing datasets on Surinam slavery into Linked Data by using...
- research data . 2019Open AccessAuthors:van Doorn, P.A.; Jonker, Jan; Vreugdenhil, T.; Breure, L.;Publisher: DANS EASY
Tussen 1997 en 2005 hebben het Nederlands Instituut voor Wetenschappelijke Informatiediensten (NIWI-KNAW), het Centraal Bureau voor de Statistiek (CBS), het Internationaal Instituut voor Sociale Geschiedenis (IISG) en de Stichting Historische Databank Nederlandse Gemeen...
- research data . 2018 . Embargo End Date: 06 Dec 2018Open Access Dutch; FlemishAuthors:Bochove, C.J. van; Lottum, J.J. van; Mourits, R.J.;Publisher: Data Archiving and Networked Services (DANS)
Veel zeelieden sloten voorafgaand aan hun reis een lening af bij winkeliers en logementhouders in de haven van vertrek. Onbekend is echter hoe dit leengedrag op individueel niveau verklaard moet worden. Dit project digitaliseerde en koppelde data uit twee primaire bronn...
- research data . 2017Open AccessAuthors:Kunneman, F.A.; Bosch, A.P.J. Van Den;
This dataset features information on all the events that were automatically extracted from Twitter and used as input to periodicity detection, as described in the paper: F. Kunneman and A. Van den Bosch (2015), Automatically identifying periodic social events from Twitt...
- research data . 2017Open Access EnglishAuthors:Kunneman, F.A.; van Mulken, M.J.P.; van den Bosch, A.P.J.;Publisher: Data Archiving and Networked Services (DANS)
This dataset features the training models, emotion classifications and emotion patterns before and after events, related to the paper: F. Kunneman, M. van Mulken and A. Van den Bosch, Anticipointment detection in event tweets (under review) Abstract of the study: We dev...
- research data . 2017Open AccessAuthors:Kunneman, F.A.; Bosch, A.P.J. van den;Publisher: DANS EASY
This dataset features the output of intermediate steps and the final output of the research that is described in the paper: F. Kunneman and A. Van den Bosch (2014), Event detection in Twitter: A machine-learning approach based on term pivoting, In: F. Grootjen, M. Otwor...
- research data . 2017Open Access EnglishAuthors:Kunneman, F.A.; Liebrecht, C.C.; Bosch, A.P.J. Van Den;Publisher: Data Archiving and Networked Services (DANS)
This dataset features all the tweetids and labels that were used to model the language of 24 hashtags, and test the performance on predicting the hashtags in unseen tweets. This study is described in: Kunneman, F.A., Liebrecht, C.C. & Bosch, A.P.J. van den (2014). The (...
- research data . 2017Open AccessAuthors:Kunneman, F.A.; Hürriyetoğlu, A.; Oostdijk, N.H.J.; Bosch, A.P.J. van den;Publisher: DANS EASY
This directory features data that is discussed in the paper: F. Kunneman, A. Hürriyetoglu, N. Oostdijk and A. Van den Bosch (2014), Timely identification of event start dates from Twitter, Computational Linguistics in the Netherlands Journal, 4, pp. 39-52, http://hdl.ha...
- research data . 2017 . Embargo End Date: 19 Jan 2017Open Access Dutch; FlemishAuthors:Kunneman, F.A.; Bosch, A.P.J. van den;Publisher: Data Archiving and Networked Services (DANS)
Input data and output of research conducted in the study described in the paper: F. Kunneman and A. Van den Bosch (2016), Open-domain extraction of future events from Twitter, Natural Language Engineering, doi: 10.1017/S1351324916000036 The paper describes a system that...
- 1
- 2