Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Digital Humanities and Cultural Heritage. Are you interested to view more results? Visit OpenAIRE - Explore.
7 Research products

  • Digital Humanities and Cultural Heritage
  • Research data
  • European Commission
  • EC|H2020
  • ES
  • Recolector de Ciencia Abierta, RECOLECTA

Date (most recent)
arrow_drop_down
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Martínez-Weinbaum, Marina; Lozano-Carbó, Miriam; Maestro-Guijarro, Laura; Carmona-Quiroga, Paula; +2 Authors

    The study was undertaken in a contemporary oil easel painting which was temporarily loaned from the Restoration-Conservation Laboratory of the Faculty of Fine Arts of the University of Barcelona. Different varnish removal procedures were assessed over this painting, and, in order to analyse and compare the efficiency of the methods, several non-invasive and invasive techniques were applied. This dataset consists of images of the artwork (general and detail) and the results of the different cleaning procedures; the varnish removal test conditions performed; Laser-induced Breakdown Spectroscopy (LIBS) spectra; Laser-induced Fluorescence (LIF) spectra; and Fourier-transform infrared spectroscopy (FTIR Spectroscopy). This information allows for assessing the results achieved with each cleaning methodology. Images are presented in JPG format. All spectra are presented in CSV format, on a single page. Descriptions of the selected areas and the experimental conditions in which the spectra were taken and the name of the column values are included at the top of each page. To illustrate the artwork, we took one image of the painting considered in the study (Fig. 1) and a general image under UV light of the picture (Fig. 2). Additionally, we can see the outcomes of varnish removal in the detail photos digital microscopy images (Fig. 3), and in detail UV light photograph of one of the cleaned areas (Fig. 4). For kinetic LIBS, 1 file per each uncleaned and cleaned by different methods area is included. Each file is composed of 41 columns, the first one (x) for wavelength and, the other 40 (y) for intensity. For LIF, 1 file per sample of the analysis of the fluorescence of each un/cleaned area. Each file is composed of 2 columns (wavelength and intensity). For FTIR, 1 file for the characterisation of the varnish, which is composed of 2 columns, the first one indicates the wavenumber (x), and the second one the transmittance (y). [EN] The removal of aged varnish on artistic paintings is a delicate intervention and the use of UV laser for this purpose is of special relevance. In particular, the use of nanosecond-pulsed lasers operating at 213 nm has been noted to produce good results in mock-up samples, but it has not been tested in real artworks. In this paper, we report on the application of this procedure for the first time on a contemporary oil easel painting with naturally aged varnish. The obtained results were compared with those achieved using traditional solvents, specifically a mixture of ligroin:acetone. Additionally, hot water was used to remove surface dirt. The performance of the different cleaning procedures was assessed with a range of techniques, including low-power microscopy, UV lamp illumination, laser-induced fluorescence (LIF), and laser-induced breakdown spectroscopy (LIBS). Of the tested treatments, the best performance is obtained by nanosecond laser irradiation at 213 nm using an adequate laser fluence (typically 0.14 J/cm2) that allows controlled and efficient removal of the outermost aged varnish layer without affecting the underlying non-aged varnish and paint layers. There are 4 folders that correspond to each technic employed for the analysis of the cleaning procedures, and 1 for the cleaning conditions description. The folder titled "PHOTOS" contains: Fig. 1 Image of the picture. Selected cleaned areas; Fig. 2 UV light image of the artwork; Fig. 3 Digital microscopy of area 6 (before and after cleaning); Fig. 4 Fluorescence under UV lamp before and after cleaning. The folder titled “LIBS” contains: LIBS_withoutcleaning; LIBS_deionizedwater; LIBS_solventmixture; LIBS_213nm,0.10 Jcm2; LIBS_213nm,0.14 Jcm2. The folder for “LIF” contains: LIF_withoutcleaning; LIF_deionizedwater; LIF_solventmixture; LIF_213nm,0.10 Jcm2; LIF_213nm,0.14 Jcm2. The folder “FTIR” contains: FTIR_varnish. The folder "Cleaning conditions description" contains the file "Cleaning treatments". This research was funded by the Spanish State Research Agency (AEI) through the project SCOCHLAS (Study and Conservation of Cultural Heritage with Lasers, PID2019-04124RBI00/AEI/1013039/501100011033), by the Community of Madrid through the project Top Heritage- CM (Tecnologías en Ciencias del Patrimonio, S2018/NMT_4372), and by the H2020 project IPERION HS (Integrated Platform for the European Research Infrastructure ON Heritage Science, GA 871034). L. Maestro-Guijarro’s participation was financed by a Youth Guarantee contract (CAM20_IQFR_AI_06) from the Community of Madrid. Peer reviewed

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    DIGITAL.CSIC
    Dataset . 2023
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility99
    visibilityviews99
    downloaddownloads33
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      DIGITAL.CSIC
      Dataset . 2023
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Oujja, M.; Palomar, T.; Martínez-Weinbaum, Marina; Martínez-Ramírez, S.; +1 Authors

    The study was undertaken in six medieval-like model glass samples UG (unaltered glass), MAK, MAR, MTA, MTB and MTN subjected to various environmental and atmospheric conditions in order to generate alteration layers of different characteristics. A potash-lime silicate glass, with composition similar to that of medieval glasses, was melted at 1400 °C during two hours, poured in a brass mould of rectangular cross section and annealed at 650 °C. The resulting glass ingot was cut in slices of around 10×10×2 mm3 and then polished using emery paper and an aqueous suspension of cerium oxide to obtain optical quality surfaces. Alteration of the glass slices was conducted by exposure to five different laboratory corrosion tests: SO2 corrosion for MAK sample, synthetic river water degradation for MAR, and degradation due to acid, basic and neutral medium for MTA, MTB and MTN, respectively. This dataset consists of images of the samples; Laser-induced Breakdown Spectrocopy (LIBS) spectra; Laser-induced Fluorescence (LIF) spectra; Optical Microscopy (OM); FT-Raman spectroscopy and Multi-Photon Excitation Fluorescence (MPEF) signals obtained with a Nonlinear optical microscopy (NLOM). This information allows characterizing the composition of both body glass and determining the thickness of the degradation layer. Images are presented in JPG. All spectra are presented in cvs format, in a single page. Descriptions of the samples and the experimental conditions in which the spectra were taken and the name of the column values are included at the top of each page. For LIBS, 1 file per sample of elemental composition of the medieval-like glass are included. Each file is composed of 2 columns (wavelength and intensity). For LIF, 1 file per sample of the analysis of fluorescent species of each medieval-like glass are included. Each file is composed of 2 columns (wavelength and intensity). For NLOM, 2 files per sample. In the first one: “MPEF Safe limits”, each file is composed for 10 columns: 2 are for depth (µm) and 8 are for MPEF signal divided in two groups relating to the the power in the sample surface. In the second group of files: “MPEF profiles”, each file is composed for 4 columns: 1 is for depth (µm), 1 is the normalized MPEF intensity, 1 is the Lorentzian fit of depth (µm) and the last one Lorentzian fit. (The thicknesses of the degradation layers of the medieval-like glasses is calculated by the FWHM values of the fits after refractive index corrections). For FT-Raman, 1 file per sample of the analysis of the structure of the medieval-like glass through their vibrational modes is included. Each file is composed of 2 columns (Raman shift and intensity in arbitrary units). This dataset is subject to a Creative Commons Attribution 4.0 International (CC BY 4.0) License. This is the experimental dataset used in the paper Eur. Phys. Plus, 136:859 (2021) (http://hdl.handle.net/10261/248668). Historical glass-based objects undergo, since the time of their manufacture, different degradation phenomena that are related to their composition and to the environment to which they were exposed. Three-dimensional (3D) structural and chemical characterization of the degradation layers is important to select the most adequate conservation strategies for glass objects. Optical microscopy (OM) is the most frequently used non-destructive method to examine the surface of historical glasses; however, the 3D structural assessment of alteration layers requires applying the destructive modality of this technique to conduct a cross-sectional study. In this work, a different approach for structural and compositional characterization of alteration layers on model medieval-like glasses is presented, based on the combination of the laser spectroscopies of laser-induced breakdown spectroscopy (LIBS), laser-induced fluorescence (LIF) and FT-Raman, and the emerging, cutting edge technique of nonlinear optical microscopy (NLOM) in the modality of multiphoton excitation fluorescence (MPEF). The results obtained through this multi-analytical photonic approach were compared with those retrieved by examination of the surface and cross sections of the samples by OM and scanning electron microscopy–energy-dispersive X-ray spectroscopy (SEM–EDS). While the combination of LIBS, LIF and FT-Raman served to assess the composition of the various alteration layers, the use of MPEF microscopy allowed the non-destructive determination of the thicknesses of these layers, showing for both thickness and composition a good agreement with the OM and SEM–EDS results. Thus, the proposed approach, which avoids sample preparation, illustrates the capability of non-destructive, or micro-destructive in the case of LIBS, laser spectroscopies and microscopies for the in situ study of glass objects of historic or/and artistic value There are 4 files which correspond to each technic employed for the analysis of the six different samples. The file title “LIBS” contains: LIBS_UG; LIBS_MAK; LIBS_MAR; LIBS_MTA; LIBS_MTB; LIBS_MTN. The file for “LIF” contains: LIF_UG; LIF_MAK; LIF_MAR; LIF_MTA; LIF_MTB; LIF_MTN. The file for “FT-RAMAN” contains: FT-RAMAN_UG; FT-RAMAN_MAK; FT-RAMAN_MAR; FT-RAMAN_MTA; FT-RAMAN_MTB; FT-RAMAN_MTN. For the “MPEF” there are two files inside. One title “MPEF safe limits” which contains the documents: MPEF_MAK_SL; MPEF_MAR_SL; MPEF_MTA_SL; MPEF_MTB_SL; MPEF_MTN_SL. And the other called “MPEF profiles” which contains: MPEF_MAK_PROFILE; MPEF_MAR_PROFILE; MPEF _MTA_PROFILE; MPEF _MTB_PROFILE; MPEF _MTN_PROFILE. This research has been funded by the Spanish State Research Agency (AEI) through projects PID2019-104124RB-I00/AEI/1013039/501100011033, the CSIC General Foundation (ComFuturo Programme), by project TOP Heritage-CM (S2018/NMT-4372) from Community of Madrid, by the H2020 European project IPERION HS (Integrated Platform for the European Research Infrastructure ON Heritage Science, GA 871034). Support by CSIC Interdisciplinary Platform “Open Heritage: Research and Society” (PTI-PAIS) is acknowledged. M.O. thanks CSIC for a contract. The authors also thank M.A. Villegas and M. García Heras (Institute of History, CSIC) for fruitful discussions on historical glasses. Peer reviewed

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    DIGITAL.CSIC
    Dataset . 2022
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility258
    visibilityviews258
    downloaddownloads58
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      DIGITAL.CSIC
      Dataset . 2022
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Gómez-Letona, Markel; Arístegui, Javier; Hernández-Hernández, Nauzet; Pérez-Lorenzo, Maria; +3 Authors

    This dataset contains the results of the characterisation of the prokaryotic community by flow cytometry and tritiated leucine incorporation from the MAFIA cruise (Migrants and Active Flux In the Atlantic ocean). Samples were collected in the tropical and subtropical Atlantic during the MAFIA cruise (April 2015) on board the BIO Hespérides. Seawater samples were collected at 13 stations (from the Brazilian coast to the Canary Islands), from the surface down to 3500 m, using a General Oceanics oceanographic rosette equipped with 24 l PVC Niskin bottles. Abundance and cell characteristics (high nucleic acid content fraction, cell volume, viability) were based on measurements performed with a FACSCalibur (Becton-Dickinson) flow cytometer. Leucine incorporation rates were estimated with tritiated leucine (Kirchman et al. 1985) using centrifugation and filtration methods (Smith and Azam 1992). The aim of this dataset was to estimate the influence of surface productivity on the standing stock, characteristics and activity (as leucine incorporation) of prokaryotes across the water column Horizon 2020 (H2020), grant/award no. 817806: Sustainable management of mesopelagic resources; Ministerio de Ciencia e Innovación (MICINN), grant/award no. CTM2012-39587-C04: Migrants and Active Flux In the Atlantic Ocean; Ministerio de Ciencia e Innovación (MICINN), grant/award no. CTM2015-69392-C3: Constraining organic carbon fluxes in an eastern boundary upwelling ecosystem (NW Africa): the role of non-sinking carbon in the context of the biological pump; Ministerio de Ciencia e Innovación (MICINN), grant/award no. CTM2017-83362-R: INTERES: Papel de las interacciones fitoplancton-bacterias en la respuesta del plancton microbiano a la entrada de nutrientes alóctonos; Ministerio de Ciencia e Innovación (MICINN), grant/award no. PID2019-109084RB-C21: Biogeochemical impact of mesoscale and sub-mesoscale processes along the life history of cyclonic and anticyclonic eddies: plankton variability and productivity No

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PANGAEA - Data Publi...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    PANGAEA
    Dataset . 2022
    Data sources: B2FIND
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PANGAEA - Data Publi...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      PANGAEA
      Dataset . 2022
      Data sources: B2FIND
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Palomar, T.; Martínez-Weinbaum, Marina; Aparicio, Mario; Maestro-Guijarro, Laura; +2 Authors

    The study was undertaken in eleven flashed glass samples, provided by LambertsGlas® consisting of a colorless base glass covered by layers of different colors and thicknesses. This dataset consists of images of the samples; Laser-induced Breakdown Spectrocopy (LIBS) spectra; Laser-induced Fluorescence (LIF) spectra; Optical Microscopy (OM) images; UV-Vis-IR spectra and Field Emission Scanning Electron Microscopy (FESEM) images and the assingment of the Energy-dispersive X-ray (EDS) analysis. This information allows characterizing the composition of both sides of the glasses and determining the chemilcal identification of chromophores responsible for the flashed glass coloration. Images are presented in JPG. All spectra are presented in cvs format, in a single page. Descriptions of the samples and the experimental conditions in which the spectra were taken and the name of the column values are included at the top of each page. For LIBS, 1 file per sample of elemental composition of the flashed glasses are included. Each file is composed of 2 columns (wavelength and intensity). For LIF, 1 file per sample of the analysis of fluorescent species of each flashed glass are included. Each file is composed of 2 columns (wavelength and intensity). For UV-Vis-IR spectroscopy, 1 file per sample of glass chromophores, just for the colored side. Each file is composed of 2 columns (wavelength and intensity). For FESEM-EDS, 2 files per sample. In the first one: "PHOTOS", 1 cross section image per sample is included. In the second group of files: "EDS", 1 file per sample of the assignment of the main elements. Each file is composed of 3 columns (the main elements, the results of the glass base and the colored layer in weight percentage, respectively). -- This dataset is subject to a Creative Commons Attribution 4.0 International (CC BY 4.0) License. There are 5 files which correspond to each technic employed for the analysis of the eleven different samples. The file title "PHOTOS" contains: Fig. 1_Flashedglasses_Photo; Fig. 2_OM_Photo. The file title “LIBS” contains: LIBS_Black-Baseglass; LIBS_Black-Coloredlayer; LIBS_Blue1-Baseglass; LIBS_Blue1-Coloredlayer; LIBS_Blue2-Baseglass; LIBS_Blue2-Coloredlayer; LIBS_Blue3-Baseglass; LIBS_Blue3-Coloredlayer; LIBS_Brown1-Baseglass; LIBS_Brown1-Coloredlayer; LIBS_Brown2-Baseglass; LIBS_Brown2-Coloredlayer; LIBS_Green1-Baseglass; LIBS_Green1-Coloredlayer; LIBS_Green2-Baseglass; LIBS_Green2-Coloredlayer; LIBS_Green3-Baseglass; LIBS_Green3-Coloredlayer; LIBS_Pink1-Baseglass; LIBS_Pink1-Coloredlayer; LIBS_Pink2-Baseglass; LIBS_Pink2-Coloredlayer. The file for “LIF” contains: LIF_Black-Baseglass; LIF_Black-Coloredlayer; LIF_Blue1-Baseglass; LIF_Blue1-Coloredlayer; LIF_Blue2-Baseglass; LIF_Blue2-Coloredlayer; LIF_Blue3-Baseglass; LIF_Blue3-Coloredlayer; LIF_Brown1-Baseglass; LIF_Brown1-Coloredlayer; LIF_Brown2-Baseglass; LIF_Brown2-Coloredlayer; LIF_Green1-Baseglass; LIF_Green1-Coloredlayer; LIF_Green2-Baseglass; LIF_Green2-Coloredlayer; LIF_Green3-Baseglass; LIF_Green3-Coloredlayer; LIF_Pink1-Baseglass; LIF_Pink1-Coloredlayer; LIF_Pink2-Baseglass; LIF_Pink2-Coloredlayer. For the “FESEM-EDS” there are two files inside. One title "EDS" which contains the documents: EDS_Black; EDS_Blue1; EDS_Blue2; EDS_Blue3; EDS_Brown1; EDS_Brown2; EDS_Brown2; EDS_Green1; EDS_Green2; EDS_Green3; EDS_Pink1; EDS_Pink2. And the other called "PHOTOS" which contains: FESEM_Black; FESEM_Blue1; FESEM_Blue2; FESEM_Blue3; FESEM_Brown1; FESEM_Brown2; FESEM_Green1; FESEM_Green2; FESEM_Green3; FESEM_Pink1; FESEM_Pink2. This is the experimental dataset used in the paper Appl. Sci., 12(11), 5760 (2022) (https://www.mdpi.com/2076-3417/12/11/5760). Flashed glasses are composed of a base glass and a thin colored layer and have been used since medieval times in stained glass windows. Their study can be challenging because of their complex composition and multilayer structure. In the present work, a set of optical and spectroscopic techniques have been used for the characterization of a representative set of flashed glasses commonly used in the manufacture of stained glass windows. The structural and chemical composition of the pieces were investigated by optical microscopy, field emission scanning electron microscopy-energy dispersive X-ray spectrometry (FESEM-EDS), UV-Vis-IR spectroscopy, laser-induced breakdown spectroscopy (LIBS), and laser-induced fluorescence (LIF). Optical microscopy and FESEM-EDS allowed the determination of the thicknesses of the colored layers, while LIBS, EDS, UV-Vis-IR, and LIF spectroscopies served for elemental, molecular, and chromophores characterization of the base glasses and colored layers. Results obtained using the micro-invasive LIBS technique were compared with those retrieved by the cross-sectional technique FESEM-EDS, which requires sample taking, and showed significant consistency and agreement. In addition, LIBS results revealed the presence of additional elements in the composition of flashed glasses that could not be detected by FESEM-EDS. The combination of UV-Vis-IR and LIF results allowed precise chemical identification of chromophores responsible for the flashed glass coloration. This research has been funded by the Spanish State Research Agency (AEI) through project PID2019-104124RB-I00/AEI/10.13039/501100011033, the Fundación General CSIC (ComFuturo Programme), by project TOP Heritage-CM (S2018/NMT-4372) from Community of Madrid, and by the H2020 European project IPERION HS (Integrated Platform for the European Research Infrastructure ON Heritage Science, GA 871034). Peer reviewed

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Gómez-Letona, Markel; Arístegui, Javier; Hernández-Hernández, Nauzet; Pérez-Lorenzo, Maria; +3 Authors

    This dataset contains the results of the characterisation of the prokaryotic community by flow cytometry and tritiated leucine incorporation from the MAFIA cruise (Migrants and Active Flux In the Atlantic ocean). Samples were collected in the tropical and subtropical Atlantic during the MAFIA cruise (April 2015) on board the BIO Hespérides. Seawater samples were collected at 13 stations (from the Brazilian coast to the Canary Islands), from the surface down to 3500 m, using a General Oceanics oceanographic rosette equipped with 24 l PVC Niskin bottles. Abundance and cell characteristics (high nucleic acid content fraction, cell volume, viability) were based on measurements performed with a FACSCalibur (Becton-Dickinson) flow cytometer. Leucine incorporation rates were estimated with tritiated leucine (Kirchman et al. 1985) using centrifugation and filtration methods (Smith and Azam 1992). The aim of this dataset was to estimate the influence of surface productivity on the standing stock, characteristics and activity (as leucine incorporation) of prokaryotes across the water column Horizon 2020 (H2020), grant/award no. 817806: Sustainable management of mesopelagic resources Ministerio de Ciencia e Innovación (MICINN), grant/award no. CTM2012-39587-C04: Migrants and Active Flux In the Atlantic Ocean; Ministerio de Ciencia e Innovación (MICINN), grant/award no. CTM2015-69392-C3: Constraining organic carbon fluxes in an eastern boundary upwelling ecosystem (NW Africa): the role of non-sinking carbon in the context of the biological pump; Ministerio de Ciencia e Innovación (MICINN), grant/award no. CTM2017-83362-R: INTERES: Papel de las interacciones fitoplancton-bacterias en la respuesta del plancton microbiano a la entrada de nutrientes alóctonos; Ministerio de Ciencia e Innovación (MICINN), grant/award no. PID2019-109084RB-C21: Biogeochemical impact of mesoscale and sub-mesoscale processes along the life history of cyclonic and anticyclonic eddies: plankton variability and productivity Peer reviewed

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PANGAEA - Data Publi...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    PANGAEA
    Dataset . 2022
    Data sources: B2FIND
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility29
    visibilityviews29
    downloaddownloads14
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PANGAEA - Data Publi...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      PANGAEA
      Dataset . 2022
      Data sources: B2FIND
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Campillos-Llanos, Leonardo; Valverde-Mateos, Ana; Capllonch-Carrión, Adrián; Moreno-Sandoval, Antonio;

    A collection of 1200 texts (292 173 tokens) about clinical trials studies and clinical trials announcements in Spanish: - 500 abstracts from journals published under a Creative Commons license, e.g. available in PubMed or the Scientific Electronic Library Online (SciELO). - 700 clinical trials announcements published in the European Clinical Trials Register and Repositorio Español de Estudios Clínicos. Texts were annotated with entities from the Unified Medical Language System semantic groups: anatomy (ANAT), pharmacological and chemical substances (CHEM), pathologies (DISO), and lab tests, diagnostic or therapeutic procedures (PROC). 46 699 entities were annotated (13.98% are nested entities). 10% of the corpus was doubly annotated, and inter-annotator agreement (IAA) achieved a mean F-measure of 85.65% (±4.79, strict match) and a mean F-measure of 93.94% (±3.31, relaxed match). European Commission: InterTalentum - Programme for Post-Doctoral Talent Attraction to CEI UAM+CSIC (713366) Peer reviewed

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2021
    License: CC BY
    Data sources: ZENODO
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2021
      License: CC BY
      Data sources: ZENODO
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Perez-Garcia, Manuel; Diaz-Ordoñez, Manuel;

    GECEM Project (ERC-Starting Grant), ref. 679371, under the European Union's Horizon 2020 Research and Innovation Programme, www.gecem.eu. GECEM Project (ERC-Starting Grant), ref. 679371, Horizon 2020, project hosted at UPO

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Digital Humanities and Cultural Heritage. Are you interested to view more results? Visit OpenAIRE - Explore.
7 Research products
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Martínez-Weinbaum, Marina; Lozano-Carbó, Miriam; Maestro-Guijarro, Laura; Carmona-Quiroga, Paula; +2 Authors

    The study was undertaken in a contemporary oil easel painting which was temporarily loaned from the Restoration-Conservation Laboratory of the Faculty of Fine Arts of the University of Barcelona. Different varnish removal procedures were assessed over this painting, and, in order to analyse and compare the efficiency of the methods, several non-invasive and invasive techniques were applied. This dataset consists of images of the artwork (general and detail) and the results of the different cleaning procedures; the varnish removal test conditions performed; Laser-induced Breakdown Spectroscopy (LIBS) spectra; Laser-induced Fluorescence (LIF) spectra; and Fourier-transform infrared spectroscopy (FTIR Spectroscopy). This information allows for assessing the results achieved with each cleaning methodology. Images are presented in JPG format. All spectra are presented in CSV format, on a single page. Descriptions of the selected areas and the experimental conditions in which the spectra were taken and the name of the column values are included at the top of each page. To illustrate the artwork, we took one image of the painting considered in the study (Fig. 1) and a general image under UV light of the picture (Fig. 2). Additionally, we can see the outcomes of varnish removal in the detail photos digital microscopy images (Fig. 3), and in detail UV light photograph of one of the cleaned areas (Fig. 4). For kinetic LIBS, 1 file per each uncleaned and cleaned by different methods area is included. Each file is composed of 41 columns, the first one (x) for wavelength and, the other 40 (y) for intensity. For LIF, 1 file per sample of the analysis of the fluorescence of each un/cleaned area. Each file is composed of 2 columns (wavelength and intensity). For FTIR, 1 file for the characterisation of the varnish, which is composed of 2 columns, the first one indicates the wavenumber (x), and the second one the transmittance (y). [EN] The removal of aged varnish on artistic paintings is a delicate intervention and the use of UV laser for this purpose is of special relevance. In particular, the use of nanosecond-pulsed lasers operating at 213 nm has been noted to produce good results in mock-up samples, but it has not been tested in real artworks. In this paper, we report on the application of this procedure for the first time on a contemporary oil easel painting with naturally aged varnish. The obtained results were compared with those achieved using traditional solvents, specifically a mixture of ligroin:acetone. Additionally, hot water was used to remove surface dirt. The performance of the different cleaning procedures was assessed with a range of techniques, including low-power microscopy, UV lamp illumination, laser-induced fluorescence (LIF), and laser-induced breakdown spectroscopy (LIBS). Of the tested treatments, the best performance is obtained by nanosecond laser irradiation at 213 nm using an adequate laser fluence (typically 0.14 J/cm2) that allows controlled and efficient removal of the outermost aged varnish layer without affecting the underlying non-aged varnish and paint layers. There are 4 folders that correspond to each technic employed for the analysis of the cleaning procedures, and 1 for the cleaning conditions description. The folder titled "PHOTOS" contains: Fig. 1 Image of the picture. Selected cleaned areas; Fig. 2 UV light image of the artwork; Fig. 3 Digital microscopy of area 6 (before and after cleaning); Fig. 4 Fluorescence under UV lamp before and after cleaning. The folder titled “LIBS” contains: LIBS_withoutcleaning; LIBS_deionizedwater; LIBS_solventmixture; LIBS_213nm,0.10 Jcm2; LIBS_213nm,0.14 Jcm2. The folder for “LIF” contains: LIF_withoutcleaning; LIF_deionizedwater; LIF_solventmixture; LIF_213nm,0.10 Jcm2; LIF_213nm,0.14 Jcm2. The folder “FTIR” contains: FTIR_varnish. The folder "Cleaning conditions description" contains the file "Cleaning treatments". This research was funded by the Spanish State Research Agency (AEI) through the project SCOCHLAS (Study and Conservation of Cultural Heritage with Lasers, PID2019-04124RBI00/AEI/1013039/501100011033), by the Community of Madrid through the project Top Heritage- CM (Tecnologías en Ciencias del Patrimonio, S2018/NMT_4372), and by the H2020 project IPERION HS (Integrated Platform for the European Research Infrastructure ON Heritage Science, GA 871034). L. Maestro-Guijarro’s participation was financed by a Youth Guarantee contract (CAM20_IQFR_AI_06) from the Community of Madrid. Peer reviewed

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    DIGITAL.CSIC
    Dataset . 2023
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility99
    visibilityviews99
    downloaddownloads33
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      DIGITAL.CSIC
      Dataset . 2023
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Oujja, M.; Palomar, T.; Martínez-Weinbaum, Marina; Martínez-Ramírez, S.; +1 Authors

    The study was undertaken in six medieval-like model glass samples UG (unaltered glass), MAK, MAR, MTA, MTB and MTN subjected to various environmental and atmospheric conditions in order to generate alteration layers of different characteristics. A potash-lime silicate glass, with composition similar to that of medieval glasses, was melted at 1400 °C during two hours, poured in a brass mould of rectangular cross section and annealed at 650 °C. The resulting glass ingot was cut in slices of around 10×10×2 mm3 and then polished using emery paper and an aqueous suspension of cerium oxide to obtain optical quality surfaces. Alteration of the glass slices was conducted by exposure to five different laboratory corrosion tests: SO2 corrosion for MAK sample, synthetic river water degradation for MAR, and degradation due to acid, basic and neutral medium for MTA, MTB and MTN, respectively. This dataset consists of images of the samples; Laser-induced Breakdown Spectrocopy (LIBS) spectra; Laser-induced Fluorescence (LIF) spectra; Optical Microscopy (OM); FT-Raman spectroscopy and Multi-Photon Excitation Fluorescence (MPEF) signals obtained with a Nonlinear optical microscopy (NLOM). This information allows characterizing the composition of both body glass and determining the thickness of the degradation layer. Images are presented in JPG. All spectra are presented in cvs format, in a single page. Descriptions of the samples and the experimental conditions in which the spectra were taken and the name of the column values are included at the top of each page. For LIBS, 1 file per sample of elemental composition of the medieval-like glass are included. Each file is composed of 2 columns (wavelength and intensity). For LIF, 1 file per sample of the analysis of fluorescent species of each medieval-like glass are included. Each file is composed of 2 columns (wavelength and intensity). For NLOM, 2 files per sample. In the first one: “MPEF Safe limits”, each file is composed for 10 columns: 2 are for depth (µm) and 8 are for MPEF signal divided in two groups relating to the the power in the sample surface. In the second group of files: “MPEF profiles”, each file is composed for 4 columns: 1 is for depth (µm), 1 is the normalized MPEF intensity, 1 is the Lorentzian fit of depth (µm) and the last one Lorentzian fit. (The thicknesses of the degradation layers of the medieval-like glasses is calculated by the FWHM values of the fits after refractive index corrections). For FT-Raman, 1 file per sample of the analysis of the structure of the medieval-like glass through their vibrational modes is included. Each file is composed of 2 columns (Raman shift and intensity in arbitrary units). This dataset is subject to a Creative Commons Attribution 4.0 International (CC BY 4.0) License. This is the experimental dataset used in the paper Eur. Phys. Plus, 136:859 (2021) (http://hdl.handle.net/10261/248668). Historical glass-based objects undergo, since the time of their manufacture, different degradation phenomena that are related to their composition and to the environment to which they were exposed. Three-dimensional (3D) structural and chemical characterization of the degradation layers is important to select the most adequate conservation strategies for glass objects. Optical microscopy (OM) is the most frequently used non-destructive method to examine the surface of historical glasses; however, the 3D structural assessment of alteration layers requires applying the destructive modality of this technique to conduct a cross-sectional study. In this work, a different approach for structural and compositional characterization of alteration layers on model medieval-like glasses is presented, based on the combination of the laser spectroscopies of laser-induced breakdown spectroscopy (LIBS), laser-induced fluorescence (LIF) and FT-Raman, and the emerging, cutting edge technique of nonlinear optical microscopy (NLOM) in the modality of multiphoton excitation fluorescence (MPEF). The results obtained through this multi-analytical photonic approach were compared with those retrieved by examination of the surface and cross sections of the samples by OM and scanning electron microscopy–energy-dispersive X-ray spectroscopy (SEM–EDS). While the combination of LIBS, LIF and FT-Raman served to assess the composition of the various alteration layers, the use of MPEF microscopy allowed the non-destructive determination of the thicknesses of these layers, showing for both thickness and composition a good agreement with the OM and SEM–EDS results. Thus, the proposed approach, which avoids sample preparation, illustrates the capability of non-destructive, or micro-destructive in the case of LIBS, laser spectroscopies and microscopies for the in situ study of glass objects of historic or/and artistic value There are 4 files which correspond to each technic employed for the analysis of the six different samples. The file title “LIBS” contains: LIBS_UG; LIBS_MAK; LIBS_MAR; LIBS_MTA; LIBS_MTB; LIBS_MTN. The file for “LIF” contains: LIF_UG; LIF_MAK; LIF_MAR; LIF_MTA; LIF_MTB; LIF_MTN. The file for “FT-RAMAN” contains: FT-RAMAN_UG; FT-RAMAN_MAK; FT-RAMAN_MAR; FT-RAMAN_MTA; FT-RAMAN_MTB; FT-RAMAN_MTN. For the “MPEF” there are two files inside. One title “MPEF safe limits” which contains the documents: MPEF_MAK_SL; MPEF_MAR_SL; MPEF_MTA_SL; MPEF_MTB_SL; MPEF_MTN_SL. And the other called “MPEF profiles” which contains: MPEF_MAK_PROFILE; MPEF_MAR_PROFILE; MPEF _MTA_PROFILE; MPEF _MTB_PROFILE; MPEF _MTN_PROFILE. This research has been funded by the Spanish State Research Agency (AEI) through projects PID2019-104124RB-I00/AEI/1013039/501100011033, the CSIC General Foundation (ComFuturo Programme), by project TOP Heritage-CM (S2018/NMT-4372) from Community of Madrid, by the H2020 European project IPERION HS (Integrated Platform for the European Research Infrastructure ON Heritage Science, GA 871034). Support by CSIC Interdisciplinary Platform “Open Heritage: Research and Society” (PTI-PAIS) is acknowledged. M.O. thanks CSIC for a contract. The authors also thank M.A. Villegas and M. García Heras (Institute of History, CSIC) for fruitful discussions on historical glasses. Peer reviewed

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    DIGITAL.CSIC
    Dataset . 2022
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility258
    visibilityviews258
    downloaddownloads58
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      DIGITAL.CSIC
      Dataset . 2022
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Gómez-Letona, Markel; Arístegui, Javier; Hernández-Hernández, Nauzet; Pérez-Lorenzo, Maria; +3 Authors

    This dataset contains the results of the characterisation of the prokaryotic community by flow cytometry and tritiated leucine incorporation from the MAFIA cruise (Migrants and Active Flux In the Atlantic ocean). Samples were collected in the tropical and subtropical Atlantic during the MAFIA cruise (April 2015) on board the BIO Hespérides. Seawater samples were collected at 13 stations (from the Brazilian coast to the Canary Islands), from the surface down to 3500 m, using a General Oceanics oceanographic rosette equipped with 24 l PVC Niskin bottles. Abundance and cell characteristics (high nucleic acid content fraction, cell volume, viability) were based on measurements performed with a FACSCalibur (Becton-Dickinson) flow cytometer. Leucine incorporation rates were estimated with tritiated leucine (Kirchman et al. 1985) using centrifugation and filtration methods (Smith and Azam 1992). The aim of this dataset was to estimate the influence of surface productivity on the standing stock, characteristics and activity (as leucine incorporation) of prokaryotes across the water column Horizon 2020 (H2020), grant/award no. 817806: Sustainable management of mesopelagic resources; Ministerio de Ciencia e Innovación (MICINN), grant/award no. CTM2012-39587-C04: Migrants and Active Flux In the Atlantic Ocean; Ministerio de Ciencia e Innovación (MICINN), grant/award no. CTM2015-69392-C3: Constraining organic carbon fluxes in an eastern boundary upwelling ecosystem (NW Africa): the role of non-sinking carbon in the context of the biological pump; Ministerio de Ciencia e Innovación (MICINN), grant/award no. CTM2017-83362-R: INTERES: Papel de las interacciones fitoplancton-bacterias en la respuesta del plancton microbiano a la entrada de nutrientes alóctonos; Ministerio de Ciencia e Innovación (MICINN), grant/award no. PID2019-109084RB-C21: Biogeochemical impact of mesoscale and sub-mesoscale processes along the life history of cyclonic and anticyclonic eddies: plankton variability and productivity No

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PANGAEA - Data Publi...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    PANGAEA
    Dataset . 2022
    Data sources: B2FIND
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PANGAEA - Data Publi...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      PANGAEA
      Dataset . 2022
      Data sources: B2FIND
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Palomar, T.; Martínez-Weinbaum, Marina; Aparicio, Mario; Maestro-Guijarro, Laura; +2 Authors

    The study was undertaken in eleven flashed glass samples, provided by LambertsGlas® consisting of a colorless base glass covered by layers of different colors and thicknesses. This dataset consists of images of the samples; Laser-induced Breakdown Spectrocopy (LIBS) spectra; Laser-induced Fluorescence (LIF) spectra; Optical Microscopy (OM) images; UV-Vis-IR spectra and Field Emission Scanning Electron Microscopy (FESEM) images and the assingment of the Energy-dispersive X-ray (EDS) analysis. This information allows characterizing the composition of both sides of the glasses and determining the chemilcal identification of chromophores responsible for the flashed glass coloration. Images are presented in JPG. All spectra are presented in cvs format, in a single page. Descriptions of the samples and the experimental conditions in which the spectra were taken and the name of the column values are included at the top of each page. For LIBS, 1 file per sample of elemental composition of the flashed glasses are included. Each file is composed of 2 columns (wavelength and intensity). For LIF, 1 file per sample of the analysis of fluorescent species of each flashed glass are included. Each file is composed of 2 columns (wavelength and intensity). For UV-Vis-IR spectroscopy, 1 file per sample of glass chromophores, just for the colored side. Each file is composed of 2 columns (wavelength and intensity). For FESEM-EDS, 2 files per sample. In the first one: "PHOTOS", 1 cross section image per sample is included. In the second group of files: "EDS", 1 file per sample of the assignment of the main elements. Each file is composed of 3 columns (the main elements, the results of the glass base and the colored layer in weight percentage, respectively). -- This dataset is subject to a Creative Commons Attribution 4.0 International (CC BY 4.0) License. There are 5 files which correspond to each technic employed for the analysis of the eleven different samples. The file title "PHOTOS" contains: Fig. 1_Flashedglasses_Photo; Fig. 2_OM_Photo. The file title “LIBS” contains: LIBS_Black-Baseglass; LIBS_Black-Coloredlayer; LIBS_Blue1-Baseglass; LIBS_Blue1-Coloredlayer; LIBS_Blue2-Baseglass; LIBS_Blue2-Coloredlayer; LIBS_Blue3-Baseglass; LIBS_Blue3-Coloredlayer; LIBS_Brown1-Baseglass; LIBS_Brown1-Coloredlayer; LIBS_Brown2-Baseglass; LIBS_Brown2-Coloredlayer; LIBS_Green1-Baseglass; LIBS_Green1-Coloredlayer; LIBS_Green2-Baseglass; LIBS_Green2-Coloredlayer; LIBS_Green3-Baseglass; LIBS_Green3-Coloredlayer; LIBS_Pink1-Baseglass; LIBS_Pink1-Coloredlayer; LIBS_Pink2-Baseglass; LIBS_Pink2-Coloredlayer. The file for “LIF” contains: LIF_Black-Baseglass; LIF_Black-Coloredlayer; LIF_Blue1-Baseglass; LIF_Blue1-Coloredlayer; LIF_Blue2-Baseglass; LIF_Blue2-Coloredlayer; LIF_Blue3-Baseglass; LIF_Blue3-Coloredlayer; LIF_Brown1-Baseglass; LIF_Brown1-Coloredlayer; LIF_Brown2-Baseglass; LIF_Brown2-Coloredlayer; LIF_Green1-Baseglass; LIF_Green1-Coloredlayer; LIF_Green2-Baseglass; LIF_Green2-Coloredlayer; LIF_Green3-Baseglass; LIF_Green3-Coloredlayer; LIF_Pink1-Baseglass; LIF_Pink1-Coloredlayer; LIF_Pink2-Baseglass; LIF_Pink2-Coloredlayer. For the “FESEM-EDS” there are two files inside. One title "EDS" which contains the documents: EDS_Black; EDS_Blue1; EDS_Blue2; EDS_Blue3; EDS_Brown1; EDS_Brown2; EDS_Brown2; EDS_Green1; EDS_Green2; EDS_Green3; EDS_Pink1; EDS_Pink2. And the other called "PHOTOS" which contains: FESEM_Black; FESEM_Blue1; FESEM_Blue2; FESEM_Blue3; FESEM_Brown1; FESEM_Brown2; FESEM_Green1; FESEM_Green2; FESEM_Green3; FESEM_Pink1; FESEM_Pink2. This is the experimental dataset used in the paper Appl. Sci., 12(11), 5760 (2022) (https://www.mdpi.com/2076-3417/12/11/5760). Flashed glasses are composed of a base glass and a thin colored layer and have been used since medieval times in stained glass windows. Their study can be challenging because of their complex composition and multilayer structure. In the present work, a set of optical and spectroscopic techniques have been used for the characterization of a representative set of flashed glasses commonly used in the manufacture of stained glass windows. The structural and chemical composition of the pieces were investigated by optical microscopy, field emission scanning electron microscopy-energy dispersive X-ray spectrometry (FESEM-EDS), UV-Vis-IR spectroscopy, laser-induced breakdown spectroscopy (LIBS), and laser-induced fluorescence (LIF). Optical microscopy and FESEM-EDS allowed the determination of the thicknesses of the colored layers, while LIBS, EDS, UV-Vis-IR, and LIF spectroscopies served for elemental, molecular, and chromophores characterization of the base glasses and colored layers. Results obtained using the micro-invasive LIBS technique were compared with those retrieved by the cross-sectional technique FESEM-EDS, which requires sample taking, and showed significant consistency and agreement. In addition, LIBS results revealed the presence of additional elements in the composition of flashed glasses that could not be detected by FESEM-EDS. The combination of UV-Vis-IR and LIF results allowed precise chemical identification of chromophores responsible for the flashed glass coloration. This research has been funded by the Spanish State Research Agency (AEI) through project PID2019-104124RB-I00/AEI/10.13039/501100011033, the Fundación General CSIC (ComFuturo Programme), by project TOP Heritage-CM (S2018/NMT-4372) from Community of Madrid, and by the H2020 European project IPERION HS (Integrated Platform for the European Research Infrastructure ON Heritage Science, GA 871034). Peer reviewed

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Gómez-Letona, Markel; Arístegui, Javier; Hernández-Hernández, Nauzet; Pérez-Lorenzo, Maria; +3 Authors

    This dataset contains the results of the characterisation of the prokaryotic community by flow cytometry and tritiated leucine incorporation from the MAFIA cruise (Migrants and Active Flux In the Atlantic ocean). Samples were collected in the tropical and subtropical Atlantic during the MAFIA cruise (April 2015) on board the BIO Hespérides. Seawater samples were collected at 13 stations (from the Brazilian coast to the Canary Islands), from the surface down to 3500 m, using a General Oceanics oceanographic rosette equipped with 24 l PVC Niskin bottles. Abundance and cell characteristics (high nucleic acid content fraction, cell volume, viability) were based on measurements performed with a FACSCalibur (Becton-Dickinson) flow cytometer. Leucine incorporation rates were estimated with tritiated leucine (Kirchman et al. 1985) using centrifugation and filtration methods (Smith and Azam 1992). The aim of this dataset was to estimate the influence of surface productivity on the standing stock, characteristics and activity (as leucine incorporation) of prokaryotes across the water column Horizon 2020 (H2020), grant/award no. 817806: Sustainable management of mesopelagic resources Ministerio de Ciencia e Innovación (MICINN), grant/award no. CTM2012-39587-C04: Migrants and Active Flux In the Atlantic Ocean; Ministerio de Ciencia e Innovación (MICINN), grant/award no. CTM2015-69392-C3: Constraining organic carbon fluxes in an eastern boundary upwelling ecosystem (NW Africa): the role of non-sinking carbon in the context of the biological pump; Ministerio de Ciencia e Innovación (MICINN), grant/award no. CTM2017-83362-R: INTERES: Papel de las interacciones fitoplancton-bacterias en la respuesta del plancton microbiano a la entrada de nutrientes alóctonos; Ministerio de Ciencia e Innovación (MICINN), grant/award no. PID2019-109084RB-C21: Biogeochemical impact of mesoscale and sub-mesoscale processes along the life history of cyclonic and anticyclonic eddies: plankton variability and productivity Peer reviewed

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PANGAEA - Data Publi...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    PANGAEA
    Dataset . 2022
    Data sources: B2FIND
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility29
    visibilityviews29
    downloaddownloads14
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PANGAEA - Data Publi...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      PANGAEA
      Dataset . 2022
      Data sources: B2FIND
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Campillos-Llanos, Leonardo; Valverde-Mateos, Ana; Capllonch-Carrión, Adrián; Moreno-Sandoval, Antonio;

    A collection of 1200 texts (292 173 tokens) about clinical trials studies and clinical trials announcements in Spanish: - 500 abstracts from journals published under a Creative Commons license, e.g. available in PubMed or the Scientific Electronic Library Online (SciELO). - 700 clinical trials announcements published in the European Clinical Trials Register and Repositorio Español de Estudios Clínicos. Texts were annotated with entities from the Unified Medical Language System semantic groups: anatomy (ANAT), pharmacological and chemical substances (CHEM), pathologies (DISO), and lab tests, diagnostic or therapeutic procedures (PROC). 46 699 entities were annotated (13.98% are nested entities). 10% of the corpus was doubly annotated, and inter-annotator agreement (IAA) achieved a mean F-measure of 85.65% (±4.79, strict match) and a mean F-measure of 93.94% (±3.31, relaxed match). European Commission: InterTalentum - Programme for Post-Doctoral Talent Attraction to CEI UAM+CSIC (713366) Peer reviewed

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2021
    License: CC BY
    Data sources: ZENODO
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2021
      License: CC BY
      Data sources: ZENODO
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.