Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
Include:
The following results are related to Digital Humanities and Cultural Heritage. Are you interested to view more results? Visit OpenAIRE - Explore.
3 Research products, page 1 of 1

  • Digital Humanities and Cultural Heritage
  • Research data
  • CH
  • FR
  • English
  • NEANIAS Underwater Research Community

Date (most recent)
arrow_drop_down
  • English
    Authors: 
    Waelbroeck, Claire; Pichat, Sylvain; B��hm, Evelyn; Missiaen, Lise;
    Publisher: PANGAEA - Data Publisher for Earth & Environmental Science
    Project: ANR | RETRO (ANR-09-BLAN-0347), EC | ACCLIMATE (339108)

    Thanks to its optimal location on the northern Brazilian margin, core MD09-3257 records both ocean circulation and atmospheric changes. The latter occur locally in the form of increased rainfall on the adjacent continent during the cold intervals recorded in Greenland ice and northern North Atlantic sediment cores (i.e. Greenland stadials). These rainfall events are recorded in MD09-3257 as peaks in ln(Ti/Ca). New sedimentary Pa/Th data indicate that mid-depth western equatorial water mass transport decreased during all of the Greenland stadials of the last 40 kyr. Using cross-wavelet transforms and spectrogram analysis, we assess the relative phase between the MD09-3257 sedimentary Pa/Th and ln(Ti/Ca) signals. We show that decreased water mass transport between a dept of ~1300 and 2300 m in the western equatorial Atlantic preceded increased rainfall over the adjacent continent by 120 to 400 y at Dansgaard-Oeschger (D-O) frequencies, and by 280 to 980 y at Heinrich-like frequencies.We suggest that the large lead of ocean circulation changes with respect to changes in tropical South American precipitation at Heinrich-like frequencies is related to the effect of a positive feedback involving iceberg discharges in the North Atlantic. In contrast, the absence of widespread ice rafted detrital layers in North Atlantic cores during D-O stadials supports the hypothesis that a feedback such as this was not triggered in the case of D-O stadials, with circulation slowdowns and subsequent changes remaining more limited during D-O stadials than Heinrich stadials.

  • English
    Authors: 
    Burckel, Pierre; Waelbroeck, Claire; Luo, Yiming; Roche, Didier M; Pichat, Sylvain; Jaccard, Samuel L; Gherardi, Jeanne-Marie; Govin, Aline; Lippold, Jörg; Thil, François;
    Publisher: PANGAEA - Data Publisher for Earth & Environmental Science
    Project: EC | ACCLIMATE (339108), SNSF | Quantifying changes in th... (111588), ANR | RETRO (ANR-09-BLAN-0347), SNSF | SeaO2 - Past changes in S... (144811)

    We reconstruct the geometry and strength of the Atlantic Meridional Overturning Circulation during Heinrich Stadial 2 and three Greenland interstadials of the 20-50 ka period based on the comparison of new and published sedimentary 231Pa/230Th data with simulated sedimentary 231Pa/230Th. We show that the deep Atlantic circulation during these interstadials was very different from that of the Holocene. Northern-sourced waters likely circulated above 2500 m depth, with a flow rate lower than that of the present day North Atlantic Deep Water (NADW). Southern-sourced deep waters most probably flowed northwards below 4000 m depth into the North Atlantic basin, and then southwards as a return flow between 2500 and 4000 m depth. The flow rate of this southern-sourced deep water was likely larger than that of the modern Antarctic Bottom Water (AABW). Our results further show that during Heinrich Stadial 2, the deep Atlantic was probably directly affected by a southern-sourced water mass below 2500 m depth, while a slow southward flowing water mass originating from the North Atlantic likely influenced depths between 1500 and 2500 m down to the equator.

  • Open Access English
    Authors: 
    Shumilovskikh, Lyudmila S; Fleitmann, Dominik;
    Publisher: PANGAEA - Data Publisher for Earth & Environmental Science
    Project: SNSF | Holocene to Late-Pleistoc... (110554)

    High-resolution pollen and dinoflagellate cyst records from sediment core M72/5-25-GC1 were used to reconstruct vegetation dynamics in northern Anatolia and surface conditions of the Black Sea between 64 and 20 ka BP. During this period, the dominance of Artemisia in the pollen record indicates a steppe landscape and arid climate conditions. However, the concomitant presence of temperate arboreal pollen suggests the existence of glacial refugia in northern Anatolia. Long-term glacial vegetation dynamics reveal two major arid phases ~64-55 and 40-32 ka BP, and two major humid phases ~54-45 and 28-20 ka BP, correlating with higher and lower summer insolation, respectively. Dansgaard-Oeschger (D-O) cycles are clearly indicated by the 25-GC1 pollen record. Greenland interstadials are characterized by a marked increase in temperate tree pollen, indicating a spread of forests due to warm/wet conditions in northern Anatolia, whereas Greenland stadials reveal cold and arid conditions as indicated by spread of xerophytic biomes. There is evidence for a phase lag of ~500 to 1500 yr between initial warming and forest expansion, possibly due to successive changes in atmospheric circulation in the North Atlantic sector. The dominance of Pyxidinopsis psilata and Spiniferites cruciformis in the dinocyst record indicates brackish Black Sea conditions during the entire glacial period. The decrease of marine indicators (marine dinocysts, acritarchs) at ~54 ka BP and increase of freshwater algae (Pediastrum, Botryococcus) from 32 to 25 ka BP reveals freshening of the Black Sea surface water. This freshening is possibly related to humid phases in the region, to connection between Caspian Sea and Black Sea, to seasonal freshening by floating ice, and/or to closer position of river mouths due to low sea level. In the southern Black Sea, Greenland interstadials are clearly indicated by high dinocyst concentrations and calcium carbonate content, as a result of an increase in primary productivity. Heinrich events show a similar impact on the environment in the northern Anatolia/Black Sea region as Greenland stadials.