Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
Include:
The following results are related to Digital Humanities and Cultural Heritage. Are you interested to view more results? Visit OpenAIRE - Explore.
345 Research products, page 1 of 35

  • Digital Humanities and Cultural Heritage
  • Publications
  • Research software
  • Other research products
  • Open Access
  • Article
  • 0501 psychology and cognitive sciences
  • European Commission

10
arrow_drop_down
Relevance
arrow_drop_down
  • Open Access English
    Authors: 
    Jose Manuel Gomez-Perez; Raul Ortega;
    Project: EC | ELG (825627)

    Textbook Question Answering is a complex task in the intersection of Machine Comprehension and Visual Question Answering that requires reasoning with multimodal information from text and diagrams. For the first time, this paper taps on the potential of transformer language models and bottom-up and top-down attention to tackle the language and visual understanding challenges this task entails. Rather than training a language-visual transformer from scratch we rely on pre-trained transformers, fine-tuning and ensembling. We add bottom-up and top-down attention to identify regions of interest corresponding to diagram constituents and their relationships, improving the selection of relevant visual information for each question and answer options. Our system ISAAQ reports unprecedented success in all TQA question types, with accuracies of 81.36%, 71.11% and 55.12% on true/false, text-only and diagram multiple choice questions. ISAAQ also demonstrates its broad applicability, obtaining state-of-the-art results in other demanding datasets. Accepted for publication as a long paper in EMNLP2020

  • Open Access English
    Authors: 
    Jana Hasenäcker; Olga Solaja; Davide Crepaldi;
    Country: Italy
    Project: EC | STATLEARN (679010)

    In visual word identification, readers automatically access word internal information: they recognize orthographically embedded words (e.g., HAT in THAT) and are sensitive to morphological structure (DEAL-ER, BASKET-BALL). The exact mechanisms that govern these processes, however, are not well established yet - how is this information used? What is the role of affixes in this process? To address these questions, we tested the activation of meaning of embedded word stems in the presence or absence of a morphological structure using two semantic categorization tasks in Italian. Participants made category decisions on words (e.g., is CARROT a type of food?). Some no-answers (is CORNER a type of food?) contained category-congruent embedded word stems (i.e., CORN-). Moreover, the embedded stems could be accompanied by a pseudo-suffix (-er in CORNER) or a non-morphological ending (-ce in PEACE) - this allowed gauging the role of pseudo-suffixes in stem activation. The analyses of accuracy and response times revealed that words were harder to reject as members of a category when they contained an embedded word stem that was indeed category-congruent. Critically, this was the case regardless of the presence or absence of a pseudo-suffix. These findings provide evidence that the lexical identification system activates the meaning of embedded word stems when the task requires semantic information. This study brings together research on orthographic neighbors and morphological processing, yielding results that have important implications for models of visual word processing.

  • Publication . Other literature type . Article . 2017
    Open Access
    Authors: 
    Hilary S.Z. Wynne; Linda Wheeldon; Aditi Lahiri;
    Countries: Norway, United Kingdom
    Project: EC | MOR-PHON (695481)

    Abstract Four language production experiments examine how English speakers plan compound words during phonological encoding. The experiments tested production latencies in both delayed and online tasks for English noun-noun compounds (e.g., daytime), adjective-noun phrases (e.g., dark time), and monomorphemic words (e.g., denim). In delayed production, speech onset latencies reflect the total number of prosodic units in the target sentence. In online production, speech latencies reflect the size of the first prosodic unit. Compounds are metrically similar to adjective-noun phrases as they contain two lexical and two prosodic words. However, in Experiments 1 and 2, native English speakers treated the compounds as single prosodic units, indistinguishable from simple words, with RT data statistically different than that of the adjective-noun phrases. Experiments 3 and 4 demonstrate that compounds are also treated as single prosodic units in utterances containing clitics (e.g., dishcloths are clean) as they incorporate the verb into a single phonological word (i.e. dishcloths-are). Taken together, these results suggest that English compounds are planned as single recursive prosodic units. Our data require an adaptation of the classic model of phonological encoding to incorporate a distinction between lexical and postlexical prosodic processes, such that lexical boundaries have consequences for post-lexical phonological encoding.

  • Publication . Other literature type . Article . 2017
    Open Access English
    Authors: 
    Michael Haslam; R. Adriana Hernandez-Aguilar; Tomos Proffitt; Adrián Arroyo; Tiago Falótico; Dorothy M. Fragaszy; Michael D. Gumert; John W.K. Harris; Michael A. Huffman; Ammie K. Kalan; +12 more
    Publisher: Nature Publishing Group
    Countries: Italy, Switzerland, United Kingdom, United Kingdom
    Project: EC | PRIMARCH (283959)

    Since its inception, archaeology has traditionally focused exclusively on humans and our direct ancestors. However, recent years have seen archaeological techniques applied to material evidence left behind by non-human animals. Here, we review advances made by the most prominent field investigating past non-human tool use: primate archaeology. This field combines survey of wild primate activity areas with ethological observations, excavations and analyses that allow the reconstruction of past primate behaviour. Because the order Primates includes humans, new insights into the behavioural evolution of apes and monkeys also can be used to better interrogate the record of early tool use in our own, hominin, lineage. This work has recently doubled the set of primate lineages with an excavated archaeological record, adding Old World macaques and New World capuchin monkeys to chimpanzees and humans, and it has shown that tool selection and transport, and discrete site formation, are universal among wild stone-tool-using primates. It has also revealed that wild capuchins regularly break stone tools in a way that can make them difficult to distinguish from simple early hominin tools. Ultimately, this research opens up opportunities for the development of a broader animal archaeology, marking the end of archaeology's anthropocentric era.

  • Publication . Other literature type . Article . Preprint . 2019
    Open Access

    Sound correspondence patterns play a crucial role for linguistic reconstruction. Linguists use them to prove language relationship, to reconstruct proto-forms, and for classical phylogenetic reconstruction based on shared innovations. Cognate words which fail to conform with expected patterns can further point to various kinds of exceptions in sound change, such as analogy or assimilation of frequent words. Here we present an automatic method for the inference of sound correspondence patterns across multiple languages based on a network approach. The core idea is to represent all columns in aligned cognate sets as nodes in a network with edges representing the degree of compatibility between the nodes. The task of inferring all compatible correspondence sets can then be handled as the well-known minimum clique cover problem in graph theory, which essentially seeks to split the graph into the smallest number of cliques in which each node is represented by exactly one clique. The resulting partitions represent all correspondence patterns which can be inferred for a given dataset. By excluding those patterns which occur in only a few cognate sets, the core of regularly recurring sound correspondences can be inferred. Based on this idea, the paper presents a method for automatic correspondence pattern recognition, which is implemented as part of a Python library which supplements the paper. To illustrate the usefulness of the method, we present how the inferred patterns can be used to predict words that have not been observed before.

  • Open Access English
    Authors: 
    Clara D. Martin; Monika Molnar; Manuel Carreiras;
    Publisher: Scientific Reports
    Country: Spain
    Project: EC | BILITERACY (295362), EC | ATHEME (613465)

    Published: 13 May 2016 The present study investigated the proactive nature of the human brain in language perception. Specifically, we examined whether early proficient bilinguals can use interlocutor identity as a cue for language prediction, using an event-related potentials (ERP) paradigm. Participants were first familiarized, through video segments, with six novel interlocutors who were either monolingual or bilingual. Then, the participants completed an audio-visual lexical decision task in which all the interlocutors uttered words and pseudo-words. Critically, the speech onset started about 350 ms after the beginning of the video. ERP waves between the onset of the visual presentation of the interlocutors and the onset of their speech significantly differed for trials where the language was not predictable (bilingual interlocutors) and trials where the language was predictable (monolingual interlocutors), revealing that visual interlocutor identity can in fact function as a cue for language prediction, even before the onset of the auditory-linguistic signal. This research was funded by the Severo Ochoa program grant SEV-2015-0490, a grant from the Spanish Ministry of Science and Innovation (PSI2012-31448), from FP7/2007-2013 Cooperation grant agreement 613465-AThEME and an ERC grant from the European Research Council (ERC-2011-ADG-295362) to M.C. We thank Antonio Ibañez for his work in stimulus preparation.

  • Publication . Conference object . Article . Preprint . 2021
    Open Access English
    Authors: 
    Henry Conklin; Bailin Wang; Kenny Smith; Ivan Titov;
    Project: NWO | Scaling Semantic Parsing ... (13221), EC | BroadSem (678254)

    Natural language is compositional; the meaning of a sentence is a function of the meaning of its parts. This property allows humans to create and interpret novel sentences, generalizing robustly outside their prior experience. Neural networks have been shown to struggle with this kind of generalization, in particular performing poorly on tasks designed to assess compositional generalization (i.e. where training and testing distributions differ in ways that would be trivial for a compositional strategy to resolve). Their poor performance on these tasks may in part be due to the nature of supervised learning which assumes training and testing data to be drawn from the same distribution. We implement a meta-learning augmented version of supervised learning whose objective directly optimizes for out-of-distribution generalization. We construct pairs of tasks for meta-learning by sub-sampling existing training data. Each pair of tasks is constructed to contain relevant examples, as determined by a similarity metric, in an effort to inhibit models from memorizing their input. Experimental results on the COGS and SCAN datasets show that our similarity-driven meta-learning can improve generalization performance. ACL2021 Camera Ready; fix a small typo

  • Open Access
    Authors: 
    Alberto Testolin; Ivilin Stoianov; Marco Zorzi;
    Publisher: Springer Science and Business Media LLC
    Country: Italy
    Project: EC | VIFER (622882), EC | GENMOD (210922)

    The use of written symbols is a major achievement of human cultural evolution. However, how abstract letter representations might be learned from vision is still an unsolved problem 1,2 . Here, we present a large-scale computational model of letter recognition based on deep neural networks 3,4 , which develops a hierarchy of increasingly more complex internal representations in a completely unsupervised way by fitting a probabilistic, generative model to the visual input 5,6 . In line with the hypothesis that learning written symbols partially recycles pre-existing neuronal circuits for object recognition 7 , earlier processing levels in the model exploit domain-general visual features learned from natural images, while domain-specific features emerge in upstream neurons following exposure to printed letters. We show that these high-level representations can be easily mapped to letter identities even for noise-degraded images, producing accurate simulations of a broad range of empirical findings on letter perception in human observers. Our model shows that by reusing natural visual primitives, learning written symbols only requires limited, domain-specific tuning, supporting the hypothesis that their shape has been culturally selected to match the statistical structure of natural environments 8 .

  • Open Access English
    Authors: 
    Michelangelo Naim; Mikhail Katkov; Stefano Recanatesi; Misha Tsodyks;
    Publisher: Cold Spring Harbor Laboratory
    Project: EC | HBP SGA1 (720270), EC | M-GATE (765549), EC | HBP SGA2 (785907), NIH | Associative Processes in ... (2R01MH055687-21)

    Structured information is easier to remember and recall than random one. In real life, information exhibits multi-level hierarchical organization, such as clauses, sentences, episodes and narratives in language. Here we show that multi-level grouping emerges even when participants perform memory recall experiments with random sets of words. To quantitatively probe brain mechanisms involved in memory structuring, we consider an experimental protocol where participants perform ‘final free recall’ (FFR) of several random lists of words each of which was first presented and recalled individually. We observe a hierarchy of grouping organizations of FFR, most notably many participants sequentially recalled relatively long chunks of words from each list before recalling words from another list. More-over, participants who exhibited strongest organization during FFR achieved highest levels of performance. Based on these results, we develop a hierarchical model of memory recall that is broadly compatible with our findings. Our study shows how highly controlled memory experiments with random and meaningless material, when combined with simple models, can be used to quantitatively probe the way meaningful information can efficiently be organized and processed in the brain, so to be easily retrieved.Significance StatementInformation that people communicate to each other is highly structured. For example, a story contains meaningful elements of various degrees of complexity (clauses, sentences, episodes etc). Recalling a story, we are chiefly concerned with these meaningful elements and not its exact wording. Here we show that people introduce structure even when recalling random lists of words, by grouping the words into ‘chunks’ of various sizes. Doing so improves their performance. The so formed chunks closely correspond in size to story elements described above. This suggests that our memory is trained to create a structure that resembles the one it typically deals with in real life, and that using random material like word lists can be used to quantitatively probe these memory mechanisms.

  • Open Access English
    Authors: 
    Kun Sun; Rong Wang;
    Publisher: Universität Stuttgart
    Country: Germany
    Project: EC | WIDE (742545)

    This study applies relative entropy in naturalistic large-scale corpus to calculate the difference among L2 (second language) learners at different levels. We chose lemma, token, POStrigram, conjunction to represent lexicon and grammar to detect the patterns of language proficiency development among different L2 groups using relative entropy. The results show that information distribution discrimination regarding lexical and grammatical differences continues to increase from L2 learners at a lower level to those at a higher level. This result is consistent with the assumption that in the course of second language acquisition, L2 learners develop towards a more complex and diverse use of language. Meanwhile, this study uses the statistics method of time series to process the data on L2 differences yielded by traditional frequency-based methods processing the same L2 corpus to compare with the results of relative entropy. However, the results from the traditional methods rarely show regularity. As compared to the algorithms in traditional approaches, relative entropy performs much better in detecting L2 proficiency development. In this sense, we have developed an effective and practical algorithm for stably detecting and predicting the developments in L2 learners’ language proficiency. H2020 European Research Council

Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
Include:
The following results are related to Digital Humanities and Cultural Heritage. Are you interested to view more results? Visit OpenAIRE - Explore.
345 Research products, page 1 of 35
  • Open Access English
    Authors: 
    Jose Manuel Gomez-Perez; Raul Ortega;
    Project: EC | ELG (825627)

    Textbook Question Answering is a complex task in the intersection of Machine Comprehension and Visual Question Answering that requires reasoning with multimodal information from text and diagrams. For the first time, this paper taps on the potential of transformer language models and bottom-up and top-down attention to tackle the language and visual understanding challenges this task entails. Rather than training a language-visual transformer from scratch we rely on pre-trained transformers, fine-tuning and ensembling. We add bottom-up and top-down attention to identify regions of interest corresponding to diagram constituents and their relationships, improving the selection of relevant visual information for each question and answer options. Our system ISAAQ reports unprecedented success in all TQA question types, with accuracies of 81.36%, 71.11% and 55.12% on true/false, text-only and diagram multiple choice questions. ISAAQ also demonstrates its broad applicability, obtaining state-of-the-art results in other demanding datasets. Accepted for publication as a long paper in EMNLP2020

  • Open Access English
    Authors: 
    Jana Hasenäcker; Olga Solaja; Davide Crepaldi;
    Country: Italy
    Project: EC | STATLEARN (679010)

    In visual word identification, readers automatically access word internal information: they recognize orthographically embedded words (e.g., HAT in THAT) and are sensitive to morphological structure (DEAL-ER, BASKET-BALL). The exact mechanisms that govern these processes, however, are not well established yet - how is this information used? What is the role of affixes in this process? To address these questions, we tested the activation of meaning of embedded word stems in the presence or absence of a morphological structure using two semantic categorization tasks in Italian. Participants made category decisions on words (e.g., is CARROT a type of food?). Some no-answers (is CORNER a type of food?) contained category-congruent embedded word stems (i.e., CORN-). Moreover, the embedded stems could be accompanied by a pseudo-suffix (-er in CORNER) or a non-morphological ending (-ce in PEACE) - this allowed gauging the role of pseudo-suffixes in stem activation. The analyses of accuracy and response times revealed that words were harder to reject as members of a category when they contained an embedded word stem that was indeed category-congruent. Critically, this was the case regardless of the presence or absence of a pseudo-suffix. These findings provide evidence that the lexical identification system activates the meaning of embedded word stems when the task requires semantic information. This study brings together research on orthographic neighbors and morphological processing, yielding results that have important implications for models of visual word processing.

  • Publication . Other literature type . Article . 2017
    Open Access
    Authors: 
    Hilary S.Z. Wynne; Linda Wheeldon; Aditi Lahiri;
    Countries: Norway, United Kingdom
    Project: EC | MOR-PHON (695481)

    Abstract Four language production experiments examine how English speakers plan compound words during phonological encoding. The experiments tested production latencies in both delayed and online tasks for English noun-noun compounds (e.g., daytime), adjective-noun phrases (e.g., dark time), and monomorphemic words (e.g., denim). In delayed production, speech onset latencies reflect the total number of prosodic units in the target sentence. In online production, speech latencies reflect the size of the first prosodic unit. Compounds are metrically similar to adjective-noun phrases as they contain two lexical and two prosodic words. However, in Experiments 1 and 2, native English speakers treated the compounds as single prosodic units, indistinguishable from simple words, with RT data statistically different than that of the adjective-noun phrases. Experiments 3 and 4 demonstrate that compounds are also treated as single prosodic units in utterances containing clitics (e.g., dishcloths are clean) as they incorporate the verb into a single phonological word (i.e. dishcloths-are). Taken together, these results suggest that English compounds are planned as single recursive prosodic units. Our data require an adaptation of the classic model of phonological encoding to incorporate a distinction between lexical and postlexical prosodic processes, such that lexical boundaries have consequences for post-lexical phonological encoding.

  • Publication . Other literature type . Article . 2017
    Open Access English
    Authors: 
    Michael Haslam; R. Adriana Hernandez-Aguilar; Tomos Proffitt; Adrián Arroyo; Tiago Falótico; Dorothy M. Fragaszy; Michael D. Gumert; John W.K. Harris; Michael A. Huffman; Ammie K. Kalan; +12 more
    Publisher: Nature Publishing Group
    Countries: Italy, Switzerland, United Kingdom, United Kingdom
    Project: EC | PRIMARCH (283959)

    Since its inception, archaeology has traditionally focused exclusively on humans and our direct ancestors. However, recent years have seen archaeological techniques applied to material evidence left behind by non-human animals. Here, we review advances made by the most prominent field investigating past non-human tool use: primate archaeology. This field combines survey of wild primate activity areas with ethological observations, excavations and analyses that allow the reconstruction of past primate behaviour. Because the order Primates includes humans, new insights into the behavioural evolution of apes and monkeys also can be used to better interrogate the record of early tool use in our own, hominin, lineage. This work has recently doubled the set of primate lineages with an excavated archaeological record, adding Old World macaques and New World capuchin monkeys to chimpanzees and humans, and it has shown that tool selection and transport, and discrete site formation, are universal among wild stone-tool-using primates. It has also revealed that wild capuchins regularly break stone tools in a way that can make them difficult to distinguish from simple early hominin tools. Ultimately, this research opens up opportunities for the development of a broader animal archaeology, marking the end of archaeology's anthropocentric era.

  • Publication . Other literature type . Article . Preprint . 2019
    Open Access

    Sound correspondence patterns play a crucial role for linguistic reconstruction. Linguists use them to prove language relationship, to reconstruct proto-forms, and for classical phylogenetic reconstruction based on shared innovations. Cognate words which fail to conform with expected patterns can further point to various kinds of exceptions in sound change, such as analogy or assimilation of frequent words. Here we present an automatic method for the inference of sound correspondence patterns across multiple languages based on a network approach. The core idea is to represent all columns in aligned cognate sets as nodes in a network with edges representing the degree of compatibility between the nodes. The task of inferring all compatible correspondence sets can then be handled as the well-known minimum clique cover problem in graph theory, which essentially seeks to split the graph into the smallest number of cliques in which each node is represented by exactly one clique. The resulting partitions represent all correspondence patterns which can be inferred for a given dataset. By excluding those patterns which occur in only a few cognate sets, the core of regularly recurring sound correspondences can be inferred. Based on this idea, the paper presents a method for automatic correspondence pattern recognition, which is implemented as part of a Python library which supplements the paper. To illustrate the usefulness of the method, we present how the inferred patterns can be used to predict words that have not been observed before.

  • Open Access English
    Authors: 
    Clara D. Martin; Monika Molnar; Manuel Carreiras;
    Publisher: Scientific Reports
    Country: Spain
    Project: EC | BILITERACY (295362), EC | ATHEME (613465)

    Published: 13 May 2016 The present study investigated the proactive nature of the human brain in language perception. Specifically, we examined whether early proficient bilinguals can use interlocutor identity as a cue for language prediction, using an event-related potentials (ERP) paradigm. Participants were first familiarized, through video segments, with six novel interlocutors who were either monolingual or bilingual. Then, the participants completed an audio-visual lexical decision task in which all the interlocutors uttered words and pseudo-words. Critically, the speech onset started about 350 ms after the beginning of the video. ERP waves between the onset of the visual presentation of the interlocutors and the onset of their speech significantly differed for trials where the language was not predictable (bilingual interlocutors) and trials where the language was predictable (monolingual interlocutors), revealing that visual interlocutor identity can in fact function as a cue for language prediction, even before the onset of the auditory-linguistic signal. This research was funded by the Severo Ochoa program grant SEV-2015-0490, a grant from the Spanish Ministry of Science and Innovation (PSI2012-31448), from FP7/2007-2013 Cooperation grant agreement 613465-AThEME and an ERC grant from the European Research Council (ERC-2011-ADG-295362) to M.C. We thank Antonio Ibañez for his work in stimulus preparation.

  • Publication . Conference object . Article . Preprint . 2021
    Open Access English
    Authors: 
    Henry Conklin; Bailin Wang; Kenny Smith; Ivan Titov;
    Project: NWO | Scaling Semantic Parsing ... (13221), EC | BroadSem (678254)

    Natural language is compositional; the meaning of a sentence is a function of the meaning of its parts. This property allows humans to create and interpret novel sentences, generalizing robustly outside their prior experience. Neural networks have been shown to struggle with this kind of generalization, in particular performing poorly on tasks designed to assess compositional generalization (i.e. where training and testing distributions differ in ways that would be trivial for a compositional strategy to resolve). Their poor performance on these tasks may in part be due to the nature of supervised learning which assumes training and testing data to be drawn from the same distribution. We implement a meta-learning augmented version of supervised learning whose objective directly optimizes for out-of-distribution generalization. We construct pairs of tasks for meta-learning by sub-sampling existing training data. Each pair of tasks is constructed to contain relevant examples, as determined by a similarity metric, in an effort to inhibit models from memorizing their input. Experimental results on the COGS and SCAN datasets show that our similarity-driven meta-learning can improve generalization performance. ACL2021 Camera Ready; fix a small typo

  • Open Access
    Authors: 
    Alberto Testolin; Ivilin Stoianov; Marco Zorzi;
    Publisher: Springer Science and Business Media LLC
    Country: Italy
    Project: EC | VIFER (622882), EC | GENMOD (210922)

    The use of written symbols is a major achievement of human cultural evolution. However, how abstract letter representations might be learned from vision is still an unsolved problem 1,2 . Here, we present a large-scale computational model of letter recognition based on deep neural networks 3,4 , which develops a hierarchy of increasingly more complex internal representations in a completely unsupervised way by fitting a probabilistic, generative model to the visual input 5,6 . In line with the hypothesis that learning written symbols partially recycles pre-existing neuronal circuits for object recognition 7 , earlier processing levels in the model exploit domain-general visual features learned from natural images, while domain-specific features emerge in upstream neurons following exposure to printed letters. We show that these high-level representations can be easily mapped to letter identities even for noise-degraded images, producing accurate simulations of a broad range of empirical findings on letter perception in human observers. Our model shows that by reusing natural visual primitives, learning written symbols only requires limited, domain-specific tuning, supporting the hypothesis that their shape has been culturally selected to match the statistical structure of natural environments 8 .

  • Open Access English
    Authors: 
    Michelangelo Naim; Mikhail Katkov; Stefano Recanatesi; Misha Tsodyks;
    Publisher: Cold Spring Harbor Laboratory
    Project: EC | HBP SGA1 (720270), EC | M-GATE (765549), EC | HBP SGA2 (785907), NIH | Associative Processes in ... (2R01MH055687-21)

    Structured information is easier to remember and recall than random one. In real life, information exhibits multi-level hierarchical organization, such as clauses, sentences, episodes and narratives in language. Here we show that multi-level grouping emerges even when participants perform memory recall experiments with random sets of words. To quantitatively probe brain mechanisms involved in memory structuring, we consider an experimental protocol where participants perform ‘final free recall’ (FFR) of several random lists of words each of which was first presented and recalled individually. We observe a hierarchy of grouping organizations of FFR, most notably many participants sequentially recalled relatively long chunks of words from each list before recalling words from another list. More-over, participants who exhibited strongest organization during FFR achieved highest levels of performance. Based on these results, we develop a hierarchical model of memory recall that is broadly compatible with our findings. Our study shows how highly controlled memory experiments with random and meaningless material, when combined with simple models, can be used to quantitatively probe the way meaningful information can efficiently be organized and processed in the brain, so to be easily retrieved.Significance StatementInformation that people communicate to each other is highly structured. For example, a story contains meaningful elements of various degrees of complexity (clauses, sentences, episodes etc). Recalling a story, we are chiefly concerned with these meaningful elements and not its exact wording. Here we show that people introduce structure even when recalling random lists of words, by grouping the words into ‘chunks’ of various sizes. Doing so improves their performance. The so formed chunks closely correspond in size to story elements described above. This suggests that our memory is trained to create a structure that resembles the one it typically deals with in real life, and that using random material like word lists can be used to quantitatively probe these memory mechanisms.

  • Open Access English
    Authors: 
    Kun Sun; Rong Wang;
    Publisher: Universität Stuttgart
    Country: Germany
    Project: EC | WIDE (742545)

    This study applies relative entropy in naturalistic large-scale corpus to calculate the difference among L2 (second language) learners at different levels. We chose lemma, token, POStrigram, conjunction to represent lexicon and grammar to detect the patterns of language proficiency development among different L2 groups using relative entropy. The results show that information distribution discrimination regarding lexical and grammatical differences continues to increase from L2 learners at a lower level to those at a higher level. This result is consistent with the assumption that in the course of second language acquisition, L2 learners develop towards a more complex and diverse use of language. Meanwhile, this study uses the statistics method of time series to process the data on L2 differences yielded by traditional frequency-based methods processing the same L2 corpus to compare with the results of relative entropy. However, the results from the traditional methods rarely show regularity. As compared to the algorithms in traditional approaches, relative entropy performs much better in detecting L2 proficiency development. In this sense, we have developed an effective and practical algorithm for stably detecting and predicting the developments in L2 learners’ language proficiency. H2020 European Research Council