Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
Include:
The following results are related to Digital Humanities and Cultural Heritage. Are you interested to view more results? Visit OpenAIRE - Explore.
709 Research products, page 1 of 71

  • Digital Humanities and Cultural Heritage
  • Publications
  • Research data
  • Research software
  • Other research products
  • Article
  • 0501 psychology and cognitive sciences
  • IT
  • EU

10
arrow_drop_down
Relevance
arrow_drop_down
  • Open Access
    Authors: 
    Jose Manuel Gomez-Perez; Raul Ortega;
    Publisher: Association for Computational Linguistics
    Project: EC | ELG (825627)

    Textbook Question Answering is a complex task in the intersection of Machine Comprehension and Visual Question Answering that requires reasoning with multimodal information from text and diagrams. For the first time, this paper taps on the potential of transformer language models and bottom-up and top-down attention to tackle the language and visual understanding challenges this task entails. Rather than training a language-visual transformer from scratch we rely on pre-trained transformers, fine-tuning and ensembling. We add bottom-up and top-down attention to identify regions of interest corresponding to diagram constituents and their relationships, improving the selection of relevant visual information for each question and answer options. Our system ISAAQ reports unprecedented success in all TQA question types, with accuracies of 81.36%, 71.11% and 55.12% on true/false, text-only and diagram multiple choice questions. ISAAQ also demonstrates its broad applicability, obtaining state-of-the-art results in other demanding datasets. Accepted for publication as a long paper in EMNLP2020

  • Open Access English
    Authors: 
    Claudia Marzi; Marcello Ferro; Ouafae Nahli;
    Publisher: King Saud bin Abdulaziz University
    Country: Italy

    AbstractAim of the present study is to model the human mental lexicon, by focussing on storage and processing dynamics, as lexical organisation relies on the process of input recoding and adaptive strategies for long-term memory organisation. A fundamental issue in word processing is represented by the emergence of the morphological organisation level in the lexicon, based on paradigmatic relations between fully-stored word forms. Morphology induction can be defined as the task of perceiving and identifying morphological formatives within morphologically complex word forms, as a function of the dynamic interaction between lexical representations and distribution and degrees of regularity in lexical data.In the computational framework we propose here (TSOMs), based on Self-Organising Maps with Hebbian connections defined over a temporal layer, the identification/perception of surface morphological relations involves the alignment of recoded representations of morphologically-related input words. Facing a non-concatenative morphology such as the Arabic inflectional system prompts a reappraisal of morphology induction through adaptive organisation strategies, which affect both lexical representations and long-term storage.We will show how a strongly adaptive self-organisation during training is conducive to emergent relations between word forms, which are concurrently, redundantly and competitively stored in human mental lexicon, and to generalising knowledge of stored words to unknown forms.

  • Open Access English
    Authors: 
    Kelly Jakubowski; Tuomas Eerola; Paolo Alborno; Gualtiero Volpe; Antonio Camurri; Martin Clayton;
    Publisher: Frontiers Media S.A.
    Countries: Italy, United Kingdom
    Project: UKRI | Interpersonal Entrainment... (AH/N00308X/1)

    The measurement and tracking of body movement within musical performances can provide valuable sources of data for studying interpersonal interaction and coordination between musicians. The continued development of tools to extract such data from video recordings will offer new opportunities to research musical movement across a diverse range of settings, including field research and other ecological contexts in which the implementation of complex motion capture systems is not feasible or affordable. Such work might also make use of the multitude of video recordings of musical performances that are already available to researchers. The present study made use of such existing data, specifically, three video datasets of ensemble performances from different genres, settings, and instrumentation (a pop piano duo, three jazz duos, and a string quartet). Three different computer vision techniques were applied to these video datasets—frame differencing, optical flow, and kernelized correlation filters (KCF)—with the aim of quantifying and tracking movements of the individual performers. All three computer vision techniques exhibited high correlations with motion capture data collected from the same musical performances, with median correlation (Pearson’s r) values of .75 to .94. The techniques that track movement in two dimensions (optical flow and KCF) provided more accurate measures of movement than a technique that provides a single estimate of overall movement change by frame for each performer (frame differencing). Measurements of performer’s movements were also more accurate when the computer vision techniques were applied to more narrowly-defined regions of interest (head) than when the same techniques were applied to larger regions (entire upper body, above the chest or waist). Some differences in movement tracking accuracy emerged between the three video datasets, which may have been due to instrument-specific motions that resulted in occlusions of the body part of interest (e.g. a violinist’s right hand occluding the head whilst tracking head movement). These results indicate that computer vision techniques can be effective in quantifying body movement from videos of musical performances, while also highlighting constraints that must be dealt with when applying such techniques in ensemble coordination research.

  • Publication . Article . 2016
    English
    Authors: 
    Anna Marmodoro; Ben T. Page;
    Project: EC | K4U (667526)

    Thomas Aquinas sees a sharp metaphysical distinction between artifacts and substances, but does not offer any explicit account of it. We argue that for Aquinas the contribution that an artisan makes to the generation of an artifact compromises the causal responsibility of the form of that artifact for what the artifact is; hence it compromises the metaphysical unity of the artifact to that of an accidental unity. By contrast, the metaphysical unity of a substance is achieved by a process of generation whereby the substantial form is solely responsible for what each part and the whole of a substance are. This, we submit, is where the metaphysical difference between artifacts and substances lies for Aquinas. Here we offer on behalf of Aquinas a novel account of the causal process of generation of substances, in terms of descending forms, and we bring out its explanatory merits by contrasting it to other existing accounts in the literature.

  • Open Access
    Authors: 
    Johanna Vartiainen; Silvia Aggujaro; Minna Lehtonen; Annika Hultén; Matti Laine; Riitta Salmelin;
    Publisher: Elsevier BV

    Despite considerable research interest, it is still an open issue as to how morphologically complex words such as "car+s" are represented and processed in the brain. We studied the neural correlates of the processing of inflected nouns in the morphologically rich Finnish language. Previous behavioral studies in Finnish have yielded a robust inflectional processing cost, i.e., inflected words are harder to recognize than otherwise matched morphologically simple words. Theoretically this effect could stem either from decomposition of inflected words into a stem and a suffix at input level and/or from subsequent recombination at the semantic-syntactic level to arrive at an interpretation of the word. To shed light on this issue, we used magnetoencephalography to reveal the time course and localization of neural effects of morphological structure and frequency of written words. Ten subjects silently read high- and low-frequency Finnish words in inflected and monomorphemic form. Morphological complexity was accompanied by stronger and longer-lasting activation of the left superior temporal cortex from 200 ms onwards. Earlier effects of morphology were not found, supporting the view that the well-established behavioral processing cost for inflected words stems from the semantic-syntactic level rather than from early decomposition. Since the effect of morphology was detected throughout the range of word frequencies employed, the majority of inflected Finnish words appears to be represented in decomposed form and only very high-frequency inflected words may acquire full-form representations.

  • Open Access
    Authors: 
    Clara D. Martin; Monika Molnar; Manuel Carreiras;
    Country: Spain
    Project: EC | BILITERACY (295362), EC | ATHEME (613465)

    Published: 13 May 2016 The present study investigated the proactive nature of the human brain in language perception. Specifically, we examined whether early proficient bilinguals can use interlocutor identity as a cue for language prediction, using an event-related potentials (ERP) paradigm. Participants were first familiarized, through video segments, with six novel interlocutors who were either monolingual or bilingual. Then, the participants completed an audio-visual lexical decision task in which all the interlocutors uttered words and pseudo-words. Critically, the speech onset started about 350 ms after the beginning of the video. ERP waves between the onset of the visual presentation of the interlocutors and the onset of their speech significantly differed for trials where the language was not predictable (bilingual interlocutors) and trials where the language was predictable (monolingual interlocutors), revealing that visual interlocutor identity can in fact function as a cue for language prediction, even before the onset of the auditory-linguistic signal. This research was funded by the Severo Ochoa program grant SEV-2015-0490, a grant from the Spanish Ministry of Science and Innovation (PSI2012-31448), from FP7/2007-2013 Cooperation grant agreement 613465-AThEME and an ERC grant from the European Research Council (ERC-2011-ADG-295362) to M.C. We thank Antonio Ibañez for his work in stimulus preparation.

  • Publication . Conference object . Preprint . Article . 2017
    Open Access
    Authors: 
    Enrico Santus; Emmanuele Chersoni; Alessandro Lenci; Philippe Blache;
    Publisher: Association for Computational Linguistics
    Countries: France, Italy, France

    In this paper, we introduce a new distributional method for modeling predicate-argument thematic fit judgments. We use a syntax-based DSM to build a prototypical representation of verb-specific roles: for every verb, we extract the most salient second order contexts for each of its roles (i.e. the most salient dimensions of typical role fillers), and then we compute thematic fit as a weighted overlap between the top features of candidate fillers and role prototypes. Our experiments show that our method consistently outperforms a baseline re-implementing a state-of-the-art system, and achieves better or comparable results to those reported in the literature for the other unsupervised systems. Moreover, it provides an explicit representation of the features characterizing verb-specific semantic roles. Comment: 9 pages, 2 figures, 5 tables, EMNLP, 2017, thematic fit, selectional preference, semantic role, DSMs, Distributional Semantic Models, Vector Space Models, VSMs, cosine, APSyn, similarity, prototype

  • Closed Access
    Authors: 
    Alessandro Portelli;
    Publisher: SAGE Publications

    Drawing from stories, literary texts, myths, and songs, the article explores the “intangible” imagery—dreams, souls, ghosts, memory—that uses the nostalgia of the past to announce the possibility of a future. The image of the buried and sleeping king represents myth of a past Golden Age but also the vision of a future rebirth. Such examples include the figures of Rip Van Winkle, Hendrick Hudson, and Boabdil in the works of US author Washington Irving (1783–1859). Other examples include the figure of Metacomet, also rescued by Irving, or of Atahualpa, of Inca mythology. From Washington Irving to the songs of Bruce Springsteen, the image of a past that accompanies and haunts the present to project a utopian future never ceases to reappear.

  • Publication . Conference object . Article . Preprint . 2021
    Open Access
    Authors: 
    Henry Conklin; Bailin Wang; Kenny Smith; Ivan Titov;
    Publisher: Association for Computational Linguistics
    Project: NWO | Scaling Semantic Parsing ... (13221), EC | BroadSem (678254)

    Natural language is compositional; the meaning of a sentence is a function of the meaning of its parts. This property allows humans to create and interpret novel sentences, generalizing robustly outside their prior experience. Neural networks have been shown to struggle with this kind of generalization, in particular performing poorly on tasks designed to assess compositional generalization (i.e. where training and testing distributions differ in ways that would be trivial for a compositional strategy to resolve). Their poor performance on these tasks may in part be due to the nature of supervised learning which assumes training and testing data to be drawn from the same distribution. We implement a meta-learning augmented version of supervised learning whose objective directly optimizes for out-of-distribution generalization. We construct pairs of tasks for meta-learning by sub-sampling existing training data. Each pair of tasks is constructed to contain relevant examples, as determined by a similarity metric, in an effort to inhibit models from memorizing their input. Experimental results on the COGS and SCAN datasets show that our similarity-driven meta-learning can improve generalization performance. Comment: ACL2021 Camera Ready; fix a small typo

  • Open Access English
    Authors: 
    Michelangelo Naim; Mikhail Katkov; Stefano Recanatesi; Misha Tsodyks;
    Project: EC | M-GATE (765549), EC | HBP SGA1 (720270), NIH | Associative Processes in ... (2R01MH055687-21), EC | HBP SGA2 (785907)

    Structured information is easier to remember and recall than random one. In real life, information exhibits multi-level hierarchical organization, such as clauses, sentences, episodes and narratives in language. Here we show that multi-level grouping emerges even when participants perform memory recall experiments with random sets of words. To quantitatively probe brain mechanisms involved in memory structuring, we consider an experimental protocol where participants perform ‘final free recall’ (FFR) of several random lists of words each of which was first presented and recalled individually. We observe a hierarchy of grouping organizations of FFR, most notably many participants sequentially recalled relatively long chunks of words from each list before recalling words from another list. More-over, participants who exhibited strongest organization during FFR achieved highest levels of performance. Based on these results, we develop a hierarchical model of memory recall that is broadly compatible with our findings. Our study shows how highly controlled memory experiments with random and meaningless material, when combined with simple models, can be used to quantitatively probe the way meaningful information can efficiently be organized and processed in the brain, so to be easily retrieved.Significance StatementInformation that people communicate to each other is highly structured. For example, a story contains meaningful elements of various degrees of complexity (clauses, sentences, episodes etc). Recalling a story, we are chiefly concerned with these meaningful elements and not its exact wording. Here we show that people introduce structure even when recalling random lists of words, by grouping the words into ‘chunks’ of various sizes. Doing so improves their performance. The so formed chunks closely correspond in size to story elements described above. This suggests that our memory is trained to create a structure that resembles the one it typically deals with in real life, and that using random material like word lists can be used to quantitatively probe these memory mechanisms.

Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
Include:
The following results are related to Digital Humanities and Cultural Heritage. Are you interested to view more results? Visit OpenAIRE - Explore.
709 Research products, page 1 of 71
  • Open Access
    Authors: 
    Jose Manuel Gomez-Perez; Raul Ortega;
    Publisher: Association for Computational Linguistics
    Project: EC | ELG (825627)

    Textbook Question Answering is a complex task in the intersection of Machine Comprehension and Visual Question Answering that requires reasoning with multimodal information from text and diagrams. For the first time, this paper taps on the potential of transformer language models and bottom-up and top-down attention to tackle the language and visual understanding challenges this task entails. Rather than training a language-visual transformer from scratch we rely on pre-trained transformers, fine-tuning and ensembling. We add bottom-up and top-down attention to identify regions of interest corresponding to diagram constituents and their relationships, improving the selection of relevant visual information for each question and answer options. Our system ISAAQ reports unprecedented success in all TQA question types, with accuracies of 81.36%, 71.11% and 55.12% on true/false, text-only and diagram multiple choice questions. ISAAQ also demonstrates its broad applicability, obtaining state-of-the-art results in other demanding datasets. Accepted for publication as a long paper in EMNLP2020

  • Open Access English
    Authors: 
    Claudia Marzi; Marcello Ferro; Ouafae Nahli;
    Publisher: King Saud bin Abdulaziz University
    Country: Italy

    AbstractAim of the present study is to model the human mental lexicon, by focussing on storage and processing dynamics, as lexical organisation relies on the process of input recoding and adaptive strategies for long-term memory organisation. A fundamental issue in word processing is represented by the emergence of the morphological organisation level in the lexicon, based on paradigmatic relations between fully-stored word forms. Morphology induction can be defined as the task of perceiving and identifying morphological formatives within morphologically complex word forms, as a function of the dynamic interaction between lexical representations and distribution and degrees of regularity in lexical data.In the computational framework we propose here (TSOMs), based on Self-Organising Maps with Hebbian connections defined over a temporal layer, the identification/perception of surface morphological relations involves the alignment of recoded representations of morphologically-related input words. Facing a non-concatenative morphology such as the Arabic inflectional system prompts a reappraisal of morphology induction through adaptive organisation strategies, which affect both lexical representations and long-term storage.We will show how a strongly adaptive self-organisation during training is conducive to emergent relations between word forms, which are concurrently, redundantly and competitively stored in human mental lexicon, and to generalising knowledge of stored words to unknown forms.

  • Open Access English
    Authors: 
    Kelly Jakubowski; Tuomas Eerola; Paolo Alborno; Gualtiero Volpe; Antonio Camurri; Martin Clayton;
    Publisher: Frontiers Media S.A.
    Countries: Italy, United Kingdom
    Project: UKRI | Interpersonal Entrainment... (AH/N00308X/1)

    The measurement and tracking of body movement within musical performances can provide valuable sources of data for studying interpersonal interaction and coordination between musicians. The continued development of tools to extract such data from video recordings will offer new opportunities to research musical movement across a diverse range of settings, including field research and other ecological contexts in which the implementation of complex motion capture systems is not feasible or affordable. Such work might also make use of the multitude of video recordings of musical performances that are already available to researchers. The present study made use of such existing data, specifically, three video datasets of ensemble performances from different genres, settings, and instrumentation (a pop piano duo, three jazz duos, and a string quartet). Three different computer vision techniques were applied to these video datasets—frame differencing, optical flow, and kernelized correlation filters (KCF)—with the aim of quantifying and tracking movements of the individual performers. All three computer vision techniques exhibited high correlations with motion capture data collected from the same musical performances, with median correlation (Pearson’s r) values of .75 to .94. The techniques that track movement in two dimensions (optical flow and KCF) provided more accurate measures of movement than a technique that provides a single estimate of overall movement change by frame for each performer (frame differencing). Measurements of performer’s movements were also more accurate when the computer vision techniques were applied to more narrowly-defined regions of interest (head) than when the same techniques were applied to larger regions (entire upper body, above the chest or waist). Some differences in movement tracking accuracy emerged between the three video datasets, which may have been due to instrument-specific motions that resulted in occlusions of the body part of interest (e.g. a violinist’s right hand occluding the head whilst tracking head movement). These results indicate that computer vision techniques can be effective in quantifying body movement from videos of musical performances, while also highlighting constraints that must be dealt with when applying such techniques in ensemble coordination research.

  • Publication . Article . 2016
    English
    Authors: 
    Anna Marmodoro; Ben T. Page;
    Project: EC | K4U (667526)

    Thomas Aquinas sees a sharp metaphysical distinction between artifacts and substances, but does not offer any explicit account of it. We argue that for Aquinas the contribution that an artisan makes to the generation of an artifact compromises the causal responsibility of the form of that artifact for what the artifact is; hence it compromises the metaphysical unity of the artifact to that of an accidental unity. By contrast, the metaphysical unity of a substance is achieved by a process of generation whereby the substantial form is solely responsible for what each part and the whole of a substance are. This, we submit, is where the metaphysical difference between artifacts and substances lies for Aquinas. Here we offer on behalf of Aquinas a novel account of the causal process of generation of substances, in terms of descending forms, and we bring out its explanatory merits by contrasting it to other existing accounts in the literature.

  • Open Access
    Authors: 
    Johanna Vartiainen; Silvia Aggujaro; Minna Lehtonen; Annika Hultén; Matti Laine; Riitta Salmelin;
    Publisher: Elsevier BV

    Despite considerable research interest, it is still an open issue as to how morphologically complex words such as "car+s" are represented and processed in the brain. We studied the neural correlates of the processing of inflected nouns in the morphologically rich Finnish language. Previous behavioral studies in Finnish have yielded a robust inflectional processing cost, i.e., inflected words are harder to recognize than otherwise matched morphologically simple words. Theoretically this effect could stem either from decomposition of inflected words into a stem and a suffix at input level and/or from subsequent recombination at the semantic-syntactic level to arrive at an interpretation of the word. To shed light on this issue, we used magnetoencephalography to reveal the time course and localization of neural effects of morphological structure and frequency of written words. Ten subjects silently read high- and low-frequency Finnish words in inflected and monomorphemic form. Morphological complexity was accompanied by stronger and longer-lasting activation of the left superior temporal cortex from 200 ms onwards. Earlier effects of morphology were not found, supporting the view that the well-established behavioral processing cost for inflected words stems from the semantic-syntactic level rather than from early decomposition. Since the effect of morphology was detected throughout the range of word frequencies employed, the majority of inflected Finnish words appears to be represented in decomposed form and only very high-frequency inflected words may acquire full-form representations.

  • Open Access
    Authors: 
    Clara D. Martin; Monika Molnar; Manuel Carreiras;
    Country: Spain
    Project: EC | BILITERACY (295362), EC | ATHEME (613465)

    Published: 13 May 2016 The present study investigated the proactive nature of the human brain in language perception. Specifically, we examined whether early proficient bilinguals can use interlocutor identity as a cue for language prediction, using an event-related potentials (ERP) paradigm. Participants were first familiarized, through video segments, with six novel interlocutors who were either monolingual or bilingual. Then, the participants completed an audio-visual lexical decision task in which all the interlocutors uttered words and pseudo-words. Critically, the speech onset started about 350 ms after the beginning of the video. ERP waves between the onset of the visual presentation of the interlocutors and the onset of their speech significantly differed for trials where the language was not predictable (bilingual interlocutors) and trials where the language was predictable (monolingual interlocutors), revealing that visual interlocutor identity can in fact function as a cue for language prediction, even before the onset of the auditory-linguistic signal. This research was funded by the Severo Ochoa program grant SEV-2015-0490, a grant from the Spanish Ministry of Science and Innovation (PSI2012-31448), from FP7/2007-2013 Cooperation grant agreement 613465-AThEME and an ERC grant from the European Research Council (ERC-2011-ADG-295362) to M.C. We thank Antonio Ibañez for his work in stimulus preparation.

  • Publication . Conference object . Preprint . Article . 2017
    Open Access
    Authors: 
    Enrico Santus; Emmanuele Chersoni; Alessandro Lenci; Philippe Blache;
    Publisher: Association for Computational Linguistics
    Countries: France, Italy, France

    In this paper, we introduce a new distributional method for modeling predicate-argument thematic fit judgments. We use a syntax-based DSM to build a prototypical representation of verb-specific roles: for every verb, we extract the most salient second order contexts for each of its roles (i.e. the most salient dimensions of typical role fillers), and then we compute thematic fit as a weighted overlap between the top features of candidate fillers and role prototypes. Our experiments show that our method consistently outperforms a baseline re-implementing a state-of-the-art system, and achieves better or comparable results to those reported in the literature for the other unsupervised systems. Moreover, it provides an explicit representation of the features characterizing verb-specific semantic roles. Comment: 9 pages, 2 figures, 5 tables, EMNLP, 2017, thematic fit, selectional preference, semantic role, DSMs, Distributional Semantic Models, Vector Space Models, VSMs, cosine, APSyn, similarity, prototype

  • Closed Access
    Authors: 
    Alessandro Portelli;
    Publisher: SAGE Publications

    Drawing from stories, literary texts, myths, and songs, the article explores the “intangible” imagery—dreams, souls, ghosts, memory—that uses the nostalgia of the past to announce the possibility of a future. The image of the buried and sleeping king represents myth of a past Golden Age but also the vision of a future rebirth. Such examples include the figures of Rip Van Winkle, Hendrick Hudson, and Boabdil in the works of US author Washington Irving (1783–1859). Other examples include the figure of Metacomet, also rescued by Irving, or of Atahualpa, of Inca mythology. From Washington Irving to the songs of Bruce Springsteen, the image of a past that accompanies and haunts the present to project a utopian future never ceases to reappear.

  • Publication . Conference object . Article . Preprint . 2021
    Open Access
    Authors: 
    Henry Conklin; Bailin Wang; Kenny Smith; Ivan Titov;
    Publisher: Association for Computational Linguistics
    Project: NWO | Scaling Semantic Parsing ... (13221), EC | BroadSem (678254)

    Natural language is compositional; the meaning of a sentence is a function of the meaning of its parts. This property allows humans to create and interpret novel sentences, generalizing robustly outside their prior experience. Neural networks have been shown to struggle with this kind of generalization, in particular performing poorly on tasks designed to assess compositional generalization (i.e. where training and testing distributions differ in ways that would be trivial for a compositional strategy to resolve). Their poor performance on these tasks may in part be due to the nature of supervised learning which assumes training and testing data to be drawn from the same distribution. We implement a meta-learning augmented version of supervised learning whose objective directly optimizes for out-of-distribution generalization. We construct pairs of tasks for meta-learning by sub-sampling existing training data. Each pair of tasks is constructed to contain relevant examples, as determined by a similarity metric, in an effort to inhibit models from memorizing their input. Experimental results on the COGS and SCAN datasets show that our similarity-driven meta-learning can improve generalization performance. Comment: ACL2021 Camera Ready; fix a small typo

  • Open Access English
    Authors: 
    Michelangelo Naim; Mikhail Katkov; Stefano Recanatesi; Misha Tsodyks;
    Project: EC | M-GATE (765549), EC | HBP SGA1 (720270), NIH | Associative Processes in ... (2R01MH055687-21), EC | HBP SGA2 (785907)

    Structured information is easier to remember and recall than random one. In real life, information exhibits multi-level hierarchical organization, such as clauses, sentences, episodes and narratives in language. Here we show that multi-level grouping emerges even when participants perform memory recall experiments with random sets of words. To quantitatively probe brain mechanisms involved in memory structuring, we consider an experimental protocol where participants perform ‘final free recall’ (FFR) of several random lists of words each of which was first presented and recalled individually. We observe a hierarchy of grouping organizations of FFR, most notably many participants sequentially recalled relatively long chunks of words from each list before recalling words from another list. More-over, participants who exhibited strongest organization during FFR achieved highest levels of performance. Based on these results, we develop a hierarchical model of memory recall that is broadly compatible with our findings. Our study shows how highly controlled memory experiments with random and meaningless material, when combined with simple models, can be used to quantitatively probe the way meaningful information can efficiently be organized and processed in the brain, so to be easily retrieved.Significance StatementInformation that people communicate to each other is highly structured. For example, a story contains meaningful elements of various degrees of complexity (clauses, sentences, episodes etc). Recalling a story, we are chiefly concerned with these meaningful elements and not its exact wording. Here we show that people introduce structure even when recalling random lists of words, by grouping the words into ‘chunks’ of various sizes. Doing so improves their performance. The so formed chunks closely correspond in size to story elements described above. This suggests that our memory is trained to create a structure that resembles the one it typically deals with in real life, and that using random material like word lists can be used to quantitatively probe these memory mechanisms.