Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
Include:
The following results are related to Digital Humanities and Cultural Heritage. Are you interested to view more results? Visit OpenAIRE - Explore.
220 Research products, page 1 of 22

  • Digital Humanities and Cultural Heritage
  • Publications
  • Research data
  • Other research products
  • Article
  • 0501 psychology and cognitive sciences
  • 050105 experimental psychology
  • European Commission
  • EC|H2020
  • EU

10
arrow_drop_down
Relevance
arrow_drop_down
  • Open Access
    Authors: 
    Jose Manuel Gomez-Perez; Raul Ortega;
    Publisher: Association for Computational Linguistics
    Project: EC | ELG (825627)

    Textbook Question Answering is a complex task in the intersection of Machine Comprehension and Visual Question Answering that requires reasoning with multimodal information from text and diagrams. For the first time, this paper taps on the potential of transformer language models and bottom-up and top-down attention to tackle the language and visual understanding challenges this task entails. Rather than training a language-visual transformer from scratch we rely on pre-trained transformers, fine-tuning and ensembling. We add bottom-up and top-down attention to identify regions of interest corresponding to diagram constituents and their relationships, improving the selection of relevant visual information for each question and answer options. Our system ISAAQ reports unprecedented success in all TQA question types, with accuracies of 81.36%, 71.11% and 55.12% on true/false, text-only and diagram multiple choice questions. ISAAQ also demonstrates its broad applicability, obtaining state-of-the-art results in other demanding datasets. Accepted for publication as a long paper in EMNLP2020

  • Publication . Article . 2016
    English
    Authors: 
    Anna Marmodoro; Ben T. Page;
    Project: EC | K4U (667526)

    Thomas Aquinas sees a sharp metaphysical distinction between artifacts and substances, but does not offer any explicit account of it. We argue that for Aquinas the contribution that an artisan makes to the generation of an artifact compromises the causal responsibility of the form of that artifact for what the artifact is; hence it compromises the metaphysical unity of the artifact to that of an accidental unity. By contrast, the metaphysical unity of a substance is achieved by a process of generation whereby the substantial form is solely responsible for what each part and the whole of a substance are. This, we submit, is where the metaphysical difference between artifacts and substances lies for Aquinas. Here we offer on behalf of Aquinas a novel account of the causal process of generation of substances, in terms of descending forms, and we bring out its explanatory merits by contrasting it to other existing accounts in the literature.

  • Publication . Conference object . Article . Preprint . 2021
    Open Access
    Authors: 
    Henry Conklin; Bailin Wang; Kenny Smith; Ivan Titov;
    Publisher: Association for Computational Linguistics
    Project: NWO | Scaling Semantic Parsing ... (13221), EC | BroadSem (678254)

    Natural language is compositional; the meaning of a sentence is a function of the meaning of its parts. This property allows humans to create and interpret novel sentences, generalizing robustly outside their prior experience. Neural networks have been shown to struggle with this kind of generalization, in particular performing poorly on tasks designed to assess compositional generalization (i.e. where training and testing distributions differ in ways that would be trivial for a compositional strategy to resolve). Their poor performance on these tasks may in part be due to the nature of supervised learning which assumes training and testing data to be drawn from the same distribution. We implement a meta-learning augmented version of supervised learning whose objective directly optimizes for out-of-distribution generalization. We construct pairs of tasks for meta-learning by sub-sampling existing training data. Each pair of tasks is constructed to contain relevant examples, as determined by a similarity metric, in an effort to inhibit models from memorizing their input. Experimental results on the COGS and SCAN datasets show that our similarity-driven meta-learning can improve generalization performance. Comment: ACL2021 Camera Ready; fix a small typo

  • Open Access English
    Authors: 
    Michelangelo Naim; Mikhail Katkov; Stefano Recanatesi; Misha Tsodyks;
    Project: EC | M-GATE (765549), EC | HBP SGA1 (720270), NIH | Associative Processes in ... (2R01MH055687-21), EC | HBP SGA2 (785907)

    Structured information is easier to remember and recall than random one. In real life, information exhibits multi-level hierarchical organization, such as clauses, sentences, episodes and narratives in language. Here we show that multi-level grouping emerges even when participants perform memory recall experiments with random sets of words. To quantitatively probe brain mechanisms involved in memory structuring, we consider an experimental protocol where participants perform ‘final free recall’ (FFR) of several random lists of words each of which was first presented and recalled individually. We observe a hierarchy of grouping organizations of FFR, most notably many participants sequentially recalled relatively long chunks of words from each list before recalling words from another list. More-over, participants who exhibited strongest organization during FFR achieved highest levels of performance. Based on these results, we develop a hierarchical model of memory recall that is broadly compatible with our findings. Our study shows how highly controlled memory experiments with random and meaningless material, when combined with simple models, can be used to quantitatively probe the way meaningful information can efficiently be organized and processed in the brain, so to be easily retrieved.Significance StatementInformation that people communicate to each other is highly structured. For example, a story contains meaningful elements of various degrees of complexity (clauses, sentences, episodes etc). Recalling a story, we are chiefly concerned with these meaningful elements and not its exact wording. Here we show that people introduce structure even when recalling random lists of words, by grouping the words into ‘chunks’ of various sizes. Doing so improves their performance. The so formed chunks closely correspond in size to story elements described above. This suggests that our memory is trained to create a structure that resembles the one it typically deals with in real life, and that using random material like word lists can be used to quantitatively probe these memory mechanisms.

  • Open Access English
    Authors: 
    Arthur Paté; Lapo Boschi; Danièle Dubois; Jean-Loïc Le Carrou; Benjamin K. Holtzman;
    Publisher: HAL CCSD
    Countries: Italy, France
    Project: EC | WAVES (641943)

    International audience; Auditory display can complement visual representations in order to better interpret scientific data. A previous article showed that the free categorization of “audified seismic signals” operated by listeners can be explained by various geophysical parameters. The present article confirms this result and shows that cognitive representations of listeners can be used as heuristics for the characterization of seismic signals. Free sorting tests are conducted with audified seismic signals, with the earthquake/seismometer relative location, playback audification speed, and earthquake magnitude as controlled variables. The analysis is built on partitions (categories) and verbal comments (categorization criteria). Participants from different backgrounds (acousticians or geoscientists) are contrasted in order to investigate the role of the participants' expertise. Sounds resulting from different earthquake/station distances or azimuths, crustal structure and topography along the path of the seismic wave, earthquake magnitude, are found to (a) be sorted into different categories, (b) elicit different verbal descriptions mainly focused on the perceived number of events, frequency content, and background noise level. Building on these perceptual results, acoustic descriptors are computed and geophysical interpretations are proposed in order to match the verbal descriptions. Another result is the robustness of the categories with respect to the audification speed factor.

  • Open Access English
    Authors: 
    Rui Mendes; Ricardo Gomes; Diederick Christian Niehorster; Efstathia Soroli;
    Publisher: Bern Open Publishing
    Project: EC | POLONEZ (665778)

    This document contains the abstracts for the 2018 Scandinavian Workshop on Applied Eye Tracking (SWAET 2018) which was held at Copenhagen Business School, Denmark, 23 to 24 August, 2018..

  • Publication . Other literature type . Article . 2017
    Open Access English
    Authors: 
    Hilary S.Z. Wynne; Linda Wheeldon; Aditi Lahiri;
    Countries: Norway, United Kingdom
    Project: EC | MOR-PHON (695481)

    Abstract Four language production experiments examine how English speakers plan compound words during phonological encoding. The experiments tested production latencies in both delayed and online tasks for English noun-noun compounds (e.g., daytime), adjective-noun phrases (e.g., dark time), and monomorphemic words (e.g., denim). In delayed production, speech onset latencies reflect the total number of prosodic units in the target sentence. In online production, speech latencies reflect the size of the first prosodic unit. Compounds are metrically similar to adjective-noun phrases as they contain two lexical and two prosodic words. However, in Experiments 1 and 2, native English speakers treated the compounds as single prosodic units, indistinguishable from simple words, with RT data statistically different than that of the adjective-noun phrases. Experiments 3 and 4 demonstrate that compounds are also treated as single prosodic units in utterances containing clitics (e.g., dishcloths are clean) as they incorporate the verb into a single phonological word (i.e. dishcloths-are). Taken together, these results suggest that English compounds are planned as single recursive prosodic units. Our data require an adaptation of the classic model of phonological encoding to incorporate a distinction between lexical and postlexical prosodic processes, such that lexical boundaries have consequences for post-lexical phonological encoding.

  • Publication . Other literature type . Article . Preprint . 2019
    Open Access English

    Sound correspondence patterns play a crucial role for linguistic reconstruction. Linguists use them to prove language relationship, to reconstruct proto-forms, and for classical phylogenetic reconstruction based on shared innovations. Cognate words that fail to conform with expected patterns can further point to various kinds of exceptions in sound change, such as analogy or assimilation of frequent words. Here I present an automatic method for the inference of sound correspondence patterns across multiple languages based on a network approach. The core idea is to represent all columns in aligned cognate sets as nodes in a network with edges representing the degree of compatibility between the nodes. The task of inferring all compatible correspondence sets can then be handled as the well-known minimum clique cover problem in graph theory, which essentially seeks to split the graph into the smallest number of cliques in which each node is represented by exactly one clique. The resulting partitions represent all correspondence patterns that can be inferred for a given data set. By excluding those patterns that occur in only a few cognate sets, the core of regularly recurring sound correspondences can be inferred. Based on this idea, the article presents a method for automatic correspondence pattern recognition, which is implemented as part of a Python library which supplements the article. To illustrate the usefulness of the method, I present how the inferred patterns can be used to predict words that have not been observed before.

  • Open Access English
    Authors: 
    Jelte M. Wicherts; Elise Anne Victoire Crompvoets;
    Country: Netherlands
    Project: EC | IMPROVE (726361)

    The syntax or codes used to fit Structural Equation Models (SEMs) convey valuable information on model specifications and the manner in which SEMs are estimated. We requested SEM syntaxes from a random sample of 229 articles (published in 1998-2013) that ran SEMs using LISREL, AMOS, or Mplus. After exchanging over 500 emails, we ended up obtaining a meagre 57 syntaxes used in these articles (24.9% of syntaxes we requested). Results considering the 129 (corresponding) authors who replied to our request showed that the odds of the syntax being lost increased by 21% per year passed since publication of the article, while the odds of actually obtaining a syntax dropped by 13% per year. So SEM syntaxes that are crucial for reproducibility and for correcting errors in the running and reporting of SEMs are often unavailable and get lost rapidly. The preferred solution is mandatory sharing of SEM syntaxes alongside articles or in data repositories.

  • Open Access English
    Authors: 
    Darren Bradley;
    Publisher: Elsevier
    Country: United Kingdom
    Project: EC | Carnap and the Limits of Metaphysics (656441)

    David Deutsch (forthcoming) offers a solution to the Epistemic Problem for Everettian Quantum Theory. In this note I raise some problems for the attempted solution.

Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
Include:
The following results are related to Digital Humanities and Cultural Heritage. Are you interested to view more results? Visit OpenAIRE - Explore.
220 Research products, page 1 of 22
  • Open Access
    Authors: 
    Jose Manuel Gomez-Perez; Raul Ortega;
    Publisher: Association for Computational Linguistics
    Project: EC | ELG (825627)

    Textbook Question Answering is a complex task in the intersection of Machine Comprehension and Visual Question Answering that requires reasoning with multimodal information from text and diagrams. For the first time, this paper taps on the potential of transformer language models and bottom-up and top-down attention to tackle the language and visual understanding challenges this task entails. Rather than training a language-visual transformer from scratch we rely on pre-trained transformers, fine-tuning and ensembling. We add bottom-up and top-down attention to identify regions of interest corresponding to diagram constituents and their relationships, improving the selection of relevant visual information for each question and answer options. Our system ISAAQ reports unprecedented success in all TQA question types, with accuracies of 81.36%, 71.11% and 55.12% on true/false, text-only and diagram multiple choice questions. ISAAQ also demonstrates its broad applicability, obtaining state-of-the-art results in other demanding datasets. Accepted for publication as a long paper in EMNLP2020

  • Publication . Article . 2016
    English
    Authors: 
    Anna Marmodoro; Ben T. Page;
    Project: EC | K4U (667526)

    Thomas Aquinas sees a sharp metaphysical distinction between artifacts and substances, but does not offer any explicit account of it. We argue that for Aquinas the contribution that an artisan makes to the generation of an artifact compromises the causal responsibility of the form of that artifact for what the artifact is; hence it compromises the metaphysical unity of the artifact to that of an accidental unity. By contrast, the metaphysical unity of a substance is achieved by a process of generation whereby the substantial form is solely responsible for what each part and the whole of a substance are. This, we submit, is where the metaphysical difference between artifacts and substances lies for Aquinas. Here we offer on behalf of Aquinas a novel account of the causal process of generation of substances, in terms of descending forms, and we bring out its explanatory merits by contrasting it to other existing accounts in the literature.

  • Publication . Conference object . Article . Preprint . 2021
    Open Access
    Authors: 
    Henry Conklin; Bailin Wang; Kenny Smith; Ivan Titov;
    Publisher: Association for Computational Linguistics
    Project: NWO | Scaling Semantic Parsing ... (13221), EC | BroadSem (678254)

    Natural language is compositional; the meaning of a sentence is a function of the meaning of its parts. This property allows humans to create and interpret novel sentences, generalizing robustly outside their prior experience. Neural networks have been shown to struggle with this kind of generalization, in particular performing poorly on tasks designed to assess compositional generalization (i.e. where training and testing distributions differ in ways that would be trivial for a compositional strategy to resolve). Their poor performance on these tasks may in part be due to the nature of supervised learning which assumes training and testing data to be drawn from the same distribution. We implement a meta-learning augmented version of supervised learning whose objective directly optimizes for out-of-distribution generalization. We construct pairs of tasks for meta-learning by sub-sampling existing training data. Each pair of tasks is constructed to contain relevant examples, as determined by a similarity metric, in an effort to inhibit models from memorizing their input. Experimental results on the COGS and SCAN datasets show that our similarity-driven meta-learning can improve generalization performance. Comment: ACL2021 Camera Ready; fix a small typo

  • Open Access English
    Authors: 
    Michelangelo Naim; Mikhail Katkov; Stefano Recanatesi; Misha Tsodyks;
    Project: EC | M-GATE (765549), EC | HBP SGA1 (720270), NIH | Associative Processes in ... (2R01MH055687-21), EC | HBP SGA2 (785907)

    Structured information is easier to remember and recall than random one. In real life, information exhibits multi-level hierarchical organization, such as clauses, sentences, episodes and narratives in language. Here we show that multi-level grouping emerges even when participants perform memory recall experiments with random sets of words. To quantitatively probe brain mechanisms involved in memory structuring, we consider an experimental protocol where participants perform ‘final free recall’ (FFR) of several random lists of words each of which was first presented and recalled individually. We observe a hierarchy of grouping organizations of FFR, most notably many participants sequentially recalled relatively long chunks of words from each list before recalling words from another list. More-over, participants who exhibited strongest organization during FFR achieved highest levels of performance. Based on these results, we develop a hierarchical model of memory recall that is broadly compatible with our findings. Our study shows how highly controlled memory experiments with random and meaningless material, when combined with simple models, can be used to quantitatively probe the way meaningful information can efficiently be organized and processed in the brain, so to be easily retrieved.Significance StatementInformation that people communicate to each other is highly structured. For example, a story contains meaningful elements of various degrees of complexity (clauses, sentences, episodes etc). Recalling a story, we are chiefly concerned with these meaningful elements and not its exact wording. Here we show that people introduce structure even when recalling random lists of words, by grouping the words into ‘chunks’ of various sizes. Doing so improves their performance. The so formed chunks closely correspond in size to story elements described above. This suggests that our memory is trained to create a structure that resembles the one it typically deals with in real life, and that using random material like word lists can be used to quantitatively probe these memory mechanisms.

  • Open Access English
    Authors: 
    Arthur Paté; Lapo Boschi; Danièle Dubois; Jean-Loïc Le Carrou; Benjamin K. Holtzman;
    Publisher: HAL CCSD
    Countries: Italy, France
    Project: EC | WAVES (641943)

    International audience; Auditory display can complement visual representations in order to better interpret scientific data. A previous article showed that the free categorization of “audified seismic signals” operated by listeners can be explained by various geophysical parameters. The present article confirms this result and shows that cognitive representations of listeners can be used as heuristics for the characterization of seismic signals. Free sorting tests are conducted with audified seismic signals, with the earthquake/seismometer relative location, playback audification speed, and earthquake magnitude as controlled variables. The analysis is built on partitions (categories) and verbal comments (categorization criteria). Participants from different backgrounds (acousticians or geoscientists) are contrasted in order to investigate the role of the participants' expertise. Sounds resulting from different earthquake/station distances or azimuths, crustal structure and topography along the path of the seismic wave, earthquake magnitude, are found to (a) be sorted into different categories, (b) elicit different verbal descriptions mainly focused on the perceived number of events, frequency content, and background noise level. Building on these perceptual results, acoustic descriptors are computed and geophysical interpretations are proposed in order to match the verbal descriptions. Another result is the robustness of the categories with respect to the audification speed factor.

  • Open Access English
    Authors: 
    Rui Mendes; Ricardo Gomes; Diederick Christian Niehorster; Efstathia Soroli;
    Publisher: Bern Open Publishing
    Project: EC | POLONEZ (665778)

    This document contains the abstracts for the 2018 Scandinavian Workshop on Applied Eye Tracking (SWAET 2018) which was held at Copenhagen Business School, Denmark, 23 to 24 August, 2018..

  • Publication . Other literature type . Article . 2017
    Open Access English
    Authors: 
    Hilary S.Z. Wynne; Linda Wheeldon; Aditi Lahiri;
    Countries: Norway, United Kingdom
    Project: EC | MOR-PHON (695481)

    Abstract Four language production experiments examine how English speakers plan compound words during phonological encoding. The experiments tested production latencies in both delayed and online tasks for English noun-noun compounds (e.g., daytime), adjective-noun phrases (e.g., dark time), and monomorphemic words (e.g., denim). In delayed production, speech onset latencies reflect the total number of prosodic units in the target sentence. In online production, speech latencies reflect the size of the first prosodic unit. Compounds are metrically similar to adjective-noun phrases as they contain two lexical and two prosodic words. However, in Experiments 1 and 2, native English speakers treated the compounds as single prosodic units, indistinguishable from simple words, with RT data statistically different than that of the adjective-noun phrases. Experiments 3 and 4 demonstrate that compounds are also treated as single prosodic units in utterances containing clitics (e.g., dishcloths are clean) as they incorporate the verb into a single phonological word (i.e. dishcloths-are). Taken together, these results suggest that English compounds are planned as single recursive prosodic units. Our data require an adaptation of the classic model of phonological encoding to incorporate a distinction between lexical and postlexical prosodic processes, such that lexical boundaries have consequences for post-lexical phonological encoding.

  • Publication . Other literature type . Article . Preprint . 2019
    Open Access English

    Sound correspondence patterns play a crucial role for linguistic reconstruction. Linguists use them to prove language relationship, to reconstruct proto-forms, and for classical phylogenetic reconstruction based on shared innovations. Cognate words that fail to conform with expected patterns can further point to various kinds of exceptions in sound change, such as analogy or assimilation of frequent words. Here I present an automatic method for the inference of sound correspondence patterns across multiple languages based on a network approach. The core idea is to represent all columns in aligned cognate sets as nodes in a network with edges representing the degree of compatibility between the nodes. The task of inferring all compatible correspondence sets can then be handled as the well-known minimum clique cover problem in graph theory, which essentially seeks to split the graph into the smallest number of cliques in which each node is represented by exactly one clique. The resulting partitions represent all correspondence patterns that can be inferred for a given data set. By excluding those patterns that occur in only a few cognate sets, the core of regularly recurring sound correspondences can be inferred. Based on this idea, the article presents a method for automatic correspondence pattern recognition, which is implemented as part of a Python library which supplements the article. To illustrate the usefulness of the method, I present how the inferred patterns can be used to predict words that have not been observed before.

  • Open Access English
    Authors: 
    Jelte M. Wicherts; Elise Anne Victoire Crompvoets;
    Country: Netherlands
    Project: EC | IMPROVE (726361)

    The syntax or codes used to fit Structural Equation Models (SEMs) convey valuable information on model specifications and the manner in which SEMs are estimated. We requested SEM syntaxes from a random sample of 229 articles (published in 1998-2013) that ran SEMs using LISREL, AMOS, or Mplus. After exchanging over 500 emails, we ended up obtaining a meagre 57 syntaxes used in these articles (24.9% of syntaxes we requested). Results considering the 129 (corresponding) authors who replied to our request showed that the odds of the syntax being lost increased by 21% per year passed since publication of the article, while the odds of actually obtaining a syntax dropped by 13% per year. So SEM syntaxes that are crucial for reproducibility and for correcting errors in the running and reporting of SEMs are often unavailable and get lost rapidly. The preferred solution is mandatory sharing of SEM syntaxes alongside articles or in data repositories.

  • Open Access English
    Authors: 
    Darren Bradley;
    Publisher: Elsevier
    Country: United Kingdom
    Project: EC | Carnap and the Limits of Metaphysics (656441)

    David Deutsch (forthcoming) offers a solution to the Epistemic Problem for Everettian Quantum Theory. In this note I raise some problems for the attempted solution.