Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
Include:
The following results are related to Digital Humanities and Cultural Heritage. Are you interested to view more results? Visit OpenAIRE - Explore.
2 Research products, page 1 of 1

  • Digital Humanities and Cultural Heritage
  • Research data
  • Other research products
  • 2022-2022
  • Open Access
  • LUTPub

Relevance
arrow_drop_down
  • Other research product . 2022
    Open Access English
    Authors: 
    Riabchenko, Alisa;
    Country: Finland

    The changes in the labor market accompanied by digitalization have influenced the approaches used for recruitment purposes. The development of machine learning and, specifically, natural language processing allowed new services for automated resume screening to appear. These services aim to reduce the time that HR specialists dedicate to sorting out unsuitable candidates, thus saving the costs per hire. This master thesis provides an analysis of the possible approach for matching CVs to JDs based on the taxonomy of competencies. In the literature review, there are the description and comparison of the different ontologies and taxonomies, and the analysis of the previous research performed in vacancy–CV matching provided. In the methodology part, there are the concepts of natural language processing and information extraction described, and the Sentence Transformer model and named entity recognition explained. Besides, evaluation approaches for taxonomy enrichment and vacancy–CV matching are suggested. In the solution development part, the described concepts and models are applied to the JDs and CVs data to perform taxonomy enrichment and matching tasks. The assessment of the matching algorithm performance based on the expert’s evaluation is presented. Based on the results obtained, the potential usage of the research and possible limitations are discussed.

  • Open Access English
    Authors: 
    Künnap, Vivian;
    Country: Finland

    Fake news is not a novel concept but the scale of its spread and the damage it has and continues to cause is alarming. From the US presidential elections in 2016 to the COVID-19 pandemic and today, fake news has been circulating in news media corrupting the public opinion. Fake news alters democratic discussions polarizing people’s opinions sowing distrust in national institutions and setting different groups against each other. It is a threat to democracy and national security. It is crucial to prevent fake news from spreading and one solution is to create an automatic fake news detection system. A solution is researched using natural language processing (NLP) tasks, namely text classification. NLP is a type of artificial intelligence that is essentially taught to understand human language. Using thematic analysis, the main steps and techniques of fake news detection models are described and through a comparative analysis the state-of-the-art models are distinguished. And while there are many potential fake news detection models for English there is not much variety for other languages. So, it is additionally analysed if these benchmark models can be implemented for Finnish language as well. Valeuutiset eivät ole uusi käsite, mutta niiden leviämisen laajuus ja niiden aiheuttamat vahingot ovat huolestuttavia. Yhdysvaltain presidentinvaaleista vuonna 2016 COVID-19-pandemiaan ja nykypäivään asti, uutismediassa on kiertänyt valeuutisia, jotka muokkaavat yleisön mielipidettä. Valeuutiset muuttavat demokraattista keskustelua polarisoimalla ihmisten mielipiteitä kylväen epäluottamusta kansallisiin instituutioihin ja asettaen erilaisia ryhmiä toisiaan vastaan. Se on uhka demokratialle ja kansalliselle turvallisuudelle. On tärkeää estää valeuutisten leviäminen, ja yksi ratkaisu on luoda automaattinen valeuutisten havaitsemisjärjestelmä. Ratkaisua tutkitaan käyttämällä luonnollisen kielen käsittelyn (NLP) tehtäviä, etenkin tekstin luokittelua. NLP on tekoälyn tyyppi, missä tietokone opetetaan ymmärtämään ihmisten kieltä. Temaattisen analyysin avulla kuvataan valeuutisten havaitsemismallien päävaiheet sekä tekniikat, ja vertailevan analyysin avulla valikoidaan uusimmat ja onnistuneimmat mallit. Ja vaikka englannin kielellä on monia mahdollisia valeuutisten havaitsemismalleja, muille kielille ei ole paljon valikoimaa. Lisäksi analysoidaan, voidaanko nämä mallit toteuttaa myös suomen kielelle.

Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
Include:
The following results are related to Digital Humanities and Cultural Heritage. Are you interested to view more results? Visit OpenAIRE - Explore.
2 Research products, page 1 of 1
  • Other research product . 2022
    Open Access English
    Authors: 
    Riabchenko, Alisa;
    Country: Finland

    The changes in the labor market accompanied by digitalization have influenced the approaches used for recruitment purposes. The development of machine learning and, specifically, natural language processing allowed new services for automated resume screening to appear. These services aim to reduce the time that HR specialists dedicate to sorting out unsuitable candidates, thus saving the costs per hire. This master thesis provides an analysis of the possible approach for matching CVs to JDs based on the taxonomy of competencies. In the literature review, there are the description and comparison of the different ontologies and taxonomies, and the analysis of the previous research performed in vacancy–CV matching provided. In the methodology part, there are the concepts of natural language processing and information extraction described, and the Sentence Transformer model and named entity recognition explained. Besides, evaluation approaches for taxonomy enrichment and vacancy–CV matching are suggested. In the solution development part, the described concepts and models are applied to the JDs and CVs data to perform taxonomy enrichment and matching tasks. The assessment of the matching algorithm performance based on the expert’s evaluation is presented. Based on the results obtained, the potential usage of the research and possible limitations are discussed.

  • Open Access English
    Authors: 
    Künnap, Vivian;
    Country: Finland

    Fake news is not a novel concept but the scale of its spread and the damage it has and continues to cause is alarming. From the US presidential elections in 2016 to the COVID-19 pandemic and today, fake news has been circulating in news media corrupting the public opinion. Fake news alters democratic discussions polarizing people’s opinions sowing distrust in national institutions and setting different groups against each other. It is a threat to democracy and national security. It is crucial to prevent fake news from spreading and one solution is to create an automatic fake news detection system. A solution is researched using natural language processing (NLP) tasks, namely text classification. NLP is a type of artificial intelligence that is essentially taught to understand human language. Using thematic analysis, the main steps and techniques of fake news detection models are described and through a comparative analysis the state-of-the-art models are distinguished. And while there are many potential fake news detection models for English there is not much variety for other languages. So, it is additionally analysed if these benchmark models can be implemented for Finnish language as well. Valeuutiset eivät ole uusi käsite, mutta niiden leviämisen laajuus ja niiden aiheuttamat vahingot ovat huolestuttavia. Yhdysvaltain presidentinvaaleista vuonna 2016 COVID-19-pandemiaan ja nykypäivään asti, uutismediassa on kiertänyt valeuutisia, jotka muokkaavat yleisön mielipidettä. Valeuutiset muuttavat demokraattista keskustelua polarisoimalla ihmisten mielipiteitä kylväen epäluottamusta kansallisiin instituutioihin ja asettaen erilaisia ryhmiä toisiaan vastaan. Se on uhka demokratialle ja kansalliselle turvallisuudelle. On tärkeää estää valeuutisten leviäminen, ja yksi ratkaisu on luoda automaattinen valeuutisten havaitsemisjärjestelmä. Ratkaisua tutkitaan käyttämällä luonnollisen kielen käsittelyn (NLP) tehtäviä, etenkin tekstin luokittelua. NLP on tekoälyn tyyppi, missä tietokone opetetaan ymmärtämään ihmisten kieltä. Temaattisen analyysin avulla kuvataan valeuutisten havaitsemismallien päävaiheet sekä tekniikat, ja vertailevan analyysin avulla valikoidaan uusimmat ja onnistuneimmat mallit. Ja vaikka englannin kielellä on monia mahdollisia valeuutisten havaitsemismalleja, muille kielille ei ole paljon valikoimaa. Lisäksi analysoidaan, voidaanko nämä mallit toteuttaa myös suomen kielelle.